conversion coefficients and atomic radiations in ensdf
play

Conversion coefficients and atomic radiations in ENSDF BrIcc, - PowerPoint PPT Presentation

Conversion coefficients and atomic radiations in ENSDF BrIcc, BrIccMixing and BrIccEmis Tibor Kib di (ANU) Tibor Kibdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018 Heavy Ion


  1. Conversion coefficients and atomic radiations in ENSDF – BrIcc, BrIccMixing and BrIccEmis Tibor Kib è di (ANU) Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  2. Heavy Ion Accelerator Facility, ANU Canberra 14 UD

  3. Research areas 7 continuing / 8 postdocs ANU HIAS ~20 research students / 60 NEC 14UD tandem electrostatic accelerator commissioned 1975 outside users) Ø Nuclear Structure ( g -ray, conversion HV: up to 15.85 MV electron spectroscopy, hyperfine Max beam on target: ~1 µ A interactions) Beam pulsing: Ø Nuclear Reaction Dynamics 1 ns ON & 106 ns to 1 s OFF Ø Accelerator Mass Spectrometry

  4. Looking for E0`s with a ``pair of glasses” in 12 C to 52 Cr (2018-Apr)

  5. Outline q Calculation of conversion coefficients q Multipole mixing ratios q Electric monopole E0 transitions q Measurements and some aspects of extracting information for ENSDF q Atomic radiations from nuclear decay Practice #3: q BrIcc, BrIccMixing, Ruler, Gabs Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  6. Outline Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  7. Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University Selection rules ( p L) momentum carried away EM decay: energy and p = (-1) L+1 for ML p = (-1) L |L-j i | ≲ j f ≲ L+j i Table of isotopes (1996) 1996FiZY R.B. Firestone, V.S. Shirley, for EL 1.428 ns stable 57.7 ps 10.1 ps ~6.7 ps 0.85 ps 28.2 fs 6.2 ps 7.2 ps 1.1 ps 0+ 2+ 4+ 0+ 6+ 2+ 1 – 4+ 3 – 2+ 5 – 3+ 1,2(+) 2+ 4+ Electromagnetic Decay Processes 0 . 1 8 0 4 . 6 1 4 2 0 7 4 . 9 0 1 . 1 0 9 0 8 4 0 . 8 6 0 5 0 . 6 2 0 1 E 6 7 . 0 2 4 9 0 4 . 0 7 E 0 7 8 5 . 5 2 0 6 + 1 1 3 M 0 1 . 3 2 . 1 1 1 0 0 . 2 5 0 2 8 4 . 5 0 1 3 . 2 9 0 5 9 8 . 7 2 2 6 . 1 7 0 5 1 8 . 7 4 0 9 2 0 2 0 7 . 6 9 . 1 1 . 7 3 2 4 2 3 0 8 4 2 . 2 0 0 . 3 3 0 8 2 0 . 1 0 9 6 . E 2 4 2 2 1 6 3 6 + 2 9 3 9 . M 8 0 2 1 1 . 5 6 1 0 + 1 6 E . 8 6 0 6 . 2 1 0 8 5 6 . 1 0 3 . 5 4 5 . 1 1 5 1 0 1 . 8 0 2 6 0 . 7 1 0 2 . 1 7 3 . 6 0 8 4 4 8 M 8 0 2 5 M 1 3 5 1 + . . 4 4 1 E 5 0 8 5 + 1 2 . E 4 E 0 2 1 . 1 9 6 3 ( . + 9 M 2 1 2 152 4 1 ) 62 Sm . 0 3 8 0 4 5 . . 2 9 9 6 6 1 0 7 4 4 . 0 . 7 1 3 E 1 3 3 2 0 9 1 . 6 . 4 3 M 3 2 5 0 6 1 7 3 . 1 5 + 9 6 . E E 1 4 7 2 2 0 9 5 . . 2 0 4 6 Part 1 of 2 9 0 7 0 2 4 1 . 1 . 9 6 4 E 0 7 0 4 1 1 8 0 ( . . 0 1 + E 0 8 M 6 0 2 1 5 6 2 . 1 ( 0 6 + ) 1 . E M 3 4 0 9 2 1 8 2 6 . 6 4 ) 1 . 3 2 2 E 0 4 1 . E 2 1 2 9 + 6 . 2 6 5 M 2 2 3 6 8 1 7 . 9 3 + 8 8 7 E . E 1 7 4 0 5 E 2 1 2 ICTP-IAEA ENSDF workshop, Trieste, October 2018 . 1 . 5 0 9 8 . 3 6 1 E 0 7 . 1 8 8 3 1 0 5 0 . 3 . 6 4 1 8 5 0 3 8 9 . . 0 4 6 E 1 4 7 0 1 2 3 8 . 9 0 . 9 2 E 1 7 7 0 6 2 6 + 8 5 4 3 E E . . 4 7 2 5 7 2 0 + 6 0 . M 2 4 . E 8 9 1 7 3 0 . 4 9 E 2 2 8 2 . 4 4 4 . 1 6 9 2 8 1 . 9 7 8 E 2 2 4 E 2 121.7825 366.4814 1022.962 1041.180 1085.897 1233.876 1292.801 1371.752 810.465 963.376 1221.64 1289.94 684.70 706.96 0 Q EC =1874.1 1.9% 0.85% 1.23% 0.23% 0.06% 21.2% 17.2% 0.62% 0.93% 3 – 13.542 y 152 63 Eu » 72.08% 11.7 11.9 11.4 12.0 12.5 11.2 10.9 9.9 9.8 0

  8. Electromagnetic Decay Processes EM decay: energy and Example (2013Ma77, M.J. Martin, NDSh 114 (2013) 1497): momentum carried away Initial level: 963.358(3) keV, J p =1 - Final level: 810.453(5) keV, J p =2 + Selection rules ( p L) D E=152.905(6) keV, D J=1, Dp =-1 |L-j i | ≲ j f ≲ L+j i E g = 152.77(16) keV; ML=[E1]; L=1 Part 1 of 2 for EL p = (-1) L 1 M 13.542 y 0 + E 2 2 + 3 – 0 p = (-1) L+1 for ML E E 1 M 2 63 Eu » 6 9 152 E + 4 7 8 2 4 8 2 2 + 9 2 7 . 5 9 E E 1 1 . . . . . 9 5 4 6 0 5 M + 4 7 3 8 4 0 6 5 3 8 8 9 4 0 3 6 2 1 2 0 6 3 2 M 7 . 2 3 4 8 6 Q EC =1874.1 6 0 0 1 1 4 . 3 . . . . 2 7 2 9 9 1 1 5 3 2 E 8 0 5 1 . ) 1 8 4 1 ) ) 9 1 6 8 2 6 5 2 E + 4 7 8 1 7 1 2 2 72.08% 2 1 2 4 3 2 2 . 8 . 0 M + 1 8 4 1 0 0 1 2 3 M M 3 . 1 9 M 1 6 0 0 0 0 1 2 8 1 + 2 2 4+ . + + 7 1 2 1 6 6 . . . . . . 1 7 4 4 M 1371.752 0.93% 10.9 ( E E + 0 0 0 0 0 0 2 5 5 7 3 8 2 ( ( 1.1 ps 0 1 1 6 1 1 1 1 2 2 2 2+ 0 3 6 2 2 0 6 . . 0 8 7 E 1292.801 0.62% 11.2 0 8 E E 2 E E 4 1 3 5 1 0 2 0 1 0 0 . 5 2 0 9 6 5 1 3 5 4 E 2 1,2(+) . . . . . . . 5 5 0 4 1 0 0 0 0 0 0 0 2 1 0 0 6 1 8 E 1289.94 9 1 3 . 4 9 E . 1 0 0 . . 5 1 1 1 6 0 7 3 5 4 . . . 6 8 6 3+ . . . 5 4 9 7 1 M 1233.876 17.2% 9.8 1 4 0 0 4 6 8 4 2 5 5 1 E 8 6 1 2 6 . . 8 5 1 . . . + 9 4 5 – 0 9 7 6 6 2 8 . 2 1221.64 1 6 1 7 1 5 1 1 7 5 E 9 6 4 7 3 0 6 3 2 3 . 1 + 2 3 6 3 9 . 3 4 2 0 2 9 . 2 0 6 7 0 1 6 2+ 4 6 8 3 6 E E E . . . 2 4 2 9 1085.897 21.2% 9.9 9 1 0 0 9 0.85 ps 4 1 9 4 0 1 8 . . 3 – 0 1 0 0 9 8 6 1041.180 0.06% 12.5 0 0 4 2 7 9 . . . . 5 7 7 7 0 0 0 0 3 6 . . 4+ 8 2 4 6 9 . 1022.962 0.23% 12.0 1 1 5 ~6.7 ps 7 5 . . . 0 8 3 2 . . 0 0 2 1 1 – 963.376 1 8 4 1 28.2 fs 8 6 4 8 9 4 7 5 3 1 . 0 1 3 1 1 0 2 4 3 8 3 0 3 E E . . . . 2+ 0 0 0 0 810.465 1.23% 11.4 7.2 ps 7 0 3 2 7 9 0 . . 4 2 6+ . 706.96 0 8 6 10.1 ps 6 5 0+ 2 684.70 E 6.2 ps 9 8 9 6 . 4 4 2 2 9 E 4 . 4+ 7 4 366.4814 0.85% 11.9 57.7 ps 2 8 7 . 1 2 1 4 . 8 2+ 2 121.7825 1.9% 11.7 1.428 ns 0+ 0 stable 152 62 Sm Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  9. Electromagnetic Decay Processes J i p E i EM decay: energy and Gamma-rays E g (1 st order) momentum carried away E g , ML Selection rules ( p L) J f p E f |L-j i | ≲ j f ≲ L+j i for EL p = (-1) L p = (-1) L+1 for ML g -ray Energetics Gamma E g = E i - E f + T r CE E CE,i = E i - E f - E BE,i + T r E + + E - = E i - E f – 2m o c 2 + T r PF Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  10. Electromagnetic Decay Processes J i p E i EM decay: energy and Gamma-rays E g (1 st order) momentum carried away E g , ML Selection rules ( p L) J f p E f |L-j i | ≲ j f ≲ L+j i Conversion electrons for EL p = (-1) L (2 nd order) p = (-1) L+1 for ML K BE K g -ray L M electron conversion (CE) K L M Energetics Gamma E g = E i - E f + T r CE E CE,i = E i - E f - E BE,i + T r E + + E - = E i - E f – 2m o c 2 + T r PF Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  11. Electromagnetic Decay Processes J i p E i EM decay: energy and Gamma-rays E g (1 st order) momentum carried away E g , ML Selection rules ( p L) J f p E f |L-j i | ≲ j f ≲ L+j i Conversion electrons for EL p = (-1) L (2 nd order) p = (-1) L+1 for ML K BE K g -ray L M electron Electron-positron pairs conversion (CE) (3 rd order) e - -e + pair e - e + (PF) 2 m o c 2 K L M Energetics Gamma E g = E i - E f + T r CE E CE,i = E i - E f - E BE,i + T r E + + E - = E i - E f – 2m o c 2 + T r PF Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  12. Electromagnetic Decay Processes J i p E i EM decay: energy and Gamma-rays E g (1 st order) momentum carried away E g , ML Selection rules ( p L) l g J f p E f |L-j i | ≲ j f ≲ L+j i Conversion electrons (CE) for EL p = (-1) L (2 nd order) p = (-1) L+1 for ML K BE K g -ray l K,CE L M electron Electron-positron pairs (PF) conversion (CE) (3 rd order) e - -e + pair e - e + (PF) 2 m o c 2 l PF K L M Transition probability Energetics l T = l g + l K + l L + l M …… + l PF Gamma E g = E i - E f + T r Conversion coefficient CE E CE,i = E i - E f - E BE,i + T r a CE,PF = l CE , PF / l g E + + E - = E i - E f – 2m o c 2 + T r l CE,PF = l g x a CE,PF PF Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend