ensdf analysis and utility codes exercises bricc
play

ENSDF analysis and utility codes Exercises BrIcc / BrIccMixing / - PowerPoint PPT Presentation

ENSDF analysis and utility codes Exercises BrIcc / BrIccMixing / Ruler/Gabs T. Kib di (ANU) Tibor Kibdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, 2018 Installing & running the codes q


  1. ENSDF analysis and utility codes Exercises BrIcc / BrIccMixing / Ruler/Gabs T. Kib è di (ANU) Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, 2018

  2. Installing & running the codes q PATH (variable) PATH is an environment variable on Unix -like operating systems, DOS, OS/2 , and Microsoft Windows, specifying a set of directories where executable programs are located. q Copy executables into a single directory (<myDir>) and add this directory to the PATH: Linux & MacOS add to the .bashsrc or .profile files: export PATH=<myDir>:$PATH Windows: use Control Panel\Environment Variables to add manually q Check if PATH is correctly set. To list ALL environment variables Linux & MacOS: printenv Windows: set q BrIcc & BrIccMixing requires BrIccHome environment variable, the directory, where the ICC (BrIccFOV22.icc) data and index files (BrIccFOV22.idx) are q Pass input/output file names on the command line bricc 99mTc.ens merge <cr> q Default file names convenient, but files will be overwritten! q Consult with terminal dialogue and calculation report files to identify problems! Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  3. Numerical and ascii values in ENSDF q ENSDF: 80 character/line (record or card) ASCII (American Standard Code for Information Interchange) file (ENSD format manual) q 17 record types: Identification, Normalization, Parent, Q-value, Level, Alpha, Beta, EC+beta+, Gamma, Reference, Cross reference, Delayed Particle, Product normalisation, Special record, History, Atomic Relaxation, End records q Often values are given in continuation records: 174Tm2 G FL=123.45 q Fixed length fields. q Value is given as ASCII string to preserve accuracy reported in the original paper q Uncertainty: symmetric, asymmetric, limits, data came from systematics, etc q Uncertainty propagation (see BrIcc manual) q No ENSDF editor available yet for all platforms Redit (Windows) Sergey Lisin (PNPI) Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  4. BrIcc – interactive use element Version & data table Input parameter can be: Ø Transition Energy [keV]: 123; 123.0, 1.23E2 Ø Chemical Symbol [max 2 char]: Os Ø Z+integer [5-110]: Z76 selects Os Ø SUBS: toggles between to show/NOT to show sub shell ICCs Ø DATA table: toggles between “Frozen Orbitals” (BrIccFO) and “No Hole” (BrIccNH) approximations Ø ?: displays information on how to use BrIcc Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  5. BrIcc – interactive use e - -e + pair g -ray 30.07 y electron (PF) 7/2+ 85.1 661.660 M4 0 conversion (CE) ≈ 137 55 Cs Q β− =1175.63 11/2 – 661.660 94.4% 9.6 1 2.552 m L K M 3/2+ 0 5.6% 12.1 stable 137 56 Ba Energetics Gamma E g = E i - E f + T r Q: How many 137 Cs decays will proceed with the emission of K CE E CE,i = E i - E f - E BE,i + T r conversion electrons? E + + E - = E i - E f – 2m o c 2 + T r PF Transition probability l T = l g + l K + l L + l M …… + l PF Conversion coefficient a CE,PF = l CE , PF / / l g = l g x a CE,PF l CE,PF = Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  6. BrIcc – interactive use e - -e + pair g -ray 30.07 y electron (PF) 7/2+ 85.1 661.660 M4 0 conversion (CE) ≈ 137 55 Cs Q β− =1175.63 11/2 – 661.660 94.4% 9.6 1 2.552 m L K M 3/2+ 0 5.6% 12.1 stable 137 56 Ba Energetics Gamma E g = E i - E f + T r Q: How many 137 Cs decays will proceed with the emission of K CE E CE,i = E i - E f - E BE,i + T r conversion electrons? E + + E - = E i - E f – 2m o c 2 + T r PF A: a K = 9.148E-02 Transition probability l K = 94.4%* l K / l T =94.4%* a K /(1+ a T ) l T = l g + l K + l L + l M …… + l PF l K =7.76% Conversion coefficient a CE,PF = l CE , PF / / l g = l g x a CE,PF l CE,PF = Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  7. BrIcc – interactive use 30.07 y 7/2+ 85.1 661.660 M4 0 ≈ 137 55 Cs Q β− =1175.63 11/2 – 661.660 94.4% 9.6 1 2.552 m 3/2+ 0 5.6% 12.1 stable 137 56 Ba Q: How many 137 Cs decays will proceed with the emission of K conversion electrons? A: a K = 9.148E-02 l K = 94.4%* l K / l T =94.4%* a K /(1+ a T ) l K =7.76% Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  8. BrIcc – use as evaluation tool Step 1: calculations Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  9. BrIcc – use as evaluation tool Step 1: calculation report bricc myEnsdf.ens<CR> bricc.lst Uncertainty on ICC q Uncertainty DE q Uncertainty on MR q Flat 1.4% from theory NOTE q Uncertainty on MR may not be symmetric q Total ICC will be inserted into CC field if a T > 1.0E-4 See BrIcc Manual how uncertainties propagated Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  10. BrIcc – use as evaluation tool Step 1: calculations BrIcc verifies G, G-cont cards and generates error messages, if needed: 150GD G 650.33 0 .3 (E2) <E> Invalid uncertainty on transition energy. <E> Invalid uncertainty on transition energy. 181RE G 148.4 2 0.8 3M1 0.13 LT 1.724 17 <E> Invalid mixing ratio. <E> Invalid mixing ratio. Use FMTCHK before running BrIcc! For some Elements and Atomic shells BrIcc energy range is limited: <W> ICC could not be calculated for EG+DEGH above 398.000 keV Extra user information 146SM G 2644.43 5 0.108 3E1+(M2) <I> Mixing ratio empty, assumed to be equal to 1. <I> Mixing ratio empty, assumed to be equal to 1. 246CM G 42.9 2 2 AP E2 <I> Uncertainties on ICC`s from transition energy uncertainty is greater than 1.0%. <I> Uncertainties on ICC`s from transition energy uncertainty is greater than 1.0%. Observe messages on terminal window! Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  11. BrIcc – use as evaluation tool Step 1: new ENSDF records New ENSDF records: Cards.new Comments New CC New S_G cards

  12. BrIcc – use as evaluation tool Step 2: merge new and old cards bricc myEnsdf.ens merge<CR> Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  13. BrIccMixing Z=52 (Te); DataSet: Icc=BrIccFO, BrIccG v2.3b (16-Dec-2014) Dp =+1 Dp =-1 Dp Dp 1.0E+05 E1(K) p L M1 M3 E1 E3 E2(K) E3(K) 1.0E+04 p ’ L’ E2 E4 M2 M4 E4(K) E5(K) 1.0E+03 M1(K) Mixing ratio (MR) M2(K) M3(K) 1.0E+02 M4(K) 𝜀 𝜌 $ 𝑀 $ /𝜌𝑀 = 𝜇 / (𝜌 $ 𝑀 $ ) M5(K) 𝜇 / (𝜌𝑀) 1.0E+01 ICC 1.0E+00 Mixing ratios can be determined from q Gamma-ray angular distributions 1.0E-01 q Gamma-gamma angular correlations 1.0E-02 q Conversion coefficients 1.0E-03 Conversion coefficient for CE and PF 1.0E-04 𝛽(𝜌 $ 𝑀 $ /𝜌𝑀) = 𝛽 𝜌𝑀 + 𝜀 + 𝛽 𝜌′𝑀′ BrIcc grapher 1 + 𝜀 + 1.0E-05 10 100 1000 10000 Transition energy [keV] Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  14. BrIccMixing Z=52 (Te); DataSet: Icc=BrIccFO, BrIccG v2.3b (16-Dec-2014) Mixing ratio (MR) 1.0E+02 E2(K) M1(K) 𝜀 𝐹2/𝑁1 = 𝜇 / (𝐹2) 𝜇 / (𝑁1) 1.0E+01 Conversion coefficient for CE and PF 1.0E+00 𝛽(𝑓𝑦𝑞) = 𝛽 𝑁1 + 𝜀 + 𝛽 𝐹2 1 + 𝜀 + 1.0E-01 ICC a(exp) – experimental ICC, ratio of ICC`s or CE, p intensities 1.0E-02 a(M1), a(E2) – theoretical M1, E2 ICC q d (MR): - ⚭ < d < + ⚭ 1.0E-03 q a ~ d 2 ; sign of d could not be determined from CE data! 1.0E-04 q Sensitivity varies largely with energy, BrIcc grapher multipolarity and shell 1.0E-05 q a (exp) must be between a (M1) and a (E2) 10 100 1000 10000 Transition energy [keV] Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  15. Running BrIccMixing q BrIcc and Gnuplot need to be installed q Prepare ASCII input file q Shell: K,L1,L2,… for ICC values: L1/L2, K/L... ICC ratio; MR mixing rato q Symmetric uncertainties only (no limits, no asymmetric UNC) q Use “#” for comments Header q <E> Error with explanation and line number will be given q Data-Sets can be combined with the “*NEW” command Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  16. BrIcc / BrIccMixing – 90 Y IT 6 6 . 9 9 ) 5 E 3 + 3 ( . 4 0 M 5 E 1 5 8 . . 1 9 7 8 7 + 4 6 682.04 3.19 h 6 9 . 9 9 ) 2 E + ( 1 M 3 5 . 2 0 2 3 − 250 ps 7 202.53 2 − 0 64.10 h 8 90 39 Y 51 Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  17. BrIcc / BrIccMixing – 90 Y IT Intensity balance at 202.53 keV level: 6 6 . 9 +7+ = 𝐽 / 9 :;< +7+ × 1 + 𝛽 9 :;< × 1 + 𝛽 9 ) 𝐽 / 5 E 3 + 3 ( . 4 0 M 5 E 1 5 8 . . 1 9 7 8 7 + 4 6 682.04 3.19 h 6 9 . 9 9 ) 2 E + ( 1 M 3 5 . 2 0 2 3 − 250 ps 7 202.53 2 − 0 64.10 h 8 90 39 Y 51 With RI and CC from ENSDF IN: 202.53(3) keV M1(+E2), MR=-0.04(4) RI: 106.8+/-0.4 CC: 0.02740+/-0.00030 TI(202): 109.7+/-0.4 OUT: 479.51(5)(3) keV M4(+E5), MR=0.1 LT RI: 99.650+/-0.030 Recalculate with BrIcc! CC: 0.0983 TI(479): 109.446+/-0.033 Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend