probing soft and hard radiations with z jets
play

Probing soft and hard radiations with Z (+ jets) Laurent Favart, - PowerPoint PPT Presentation

REF2017, Madrid Probing soft and hard radiations with Z (+ jets) Laurent Favart, Philippe Gras, Anastasia Grebenyuk, Sandeep Kaur, Qun Wang, Fengwangdong Zhang 13 November 2017 Introduction Z (+ jets) precision measurements crucial for deep


  1. REF2017, Madrid Probing soft and hard radiations with Z (+ jets) Laurent Favart, Philippe Gras, Anastasia Grebenyuk, Sandeep Kaur, Qun Wang, Fengwangdong Zhang 13 November 2017

  2. Introduction ◮ Z (+ jets) precision measurements crucial for deep understanding and modeling of QCD interactions ◮ standard candle at LHC: high cross section; almost background free; high precision of the full kinematic reconstruction ◮ important for modeling of the production mechanism involved in the Higgs boson and new physics ◮ Z (+ jets) process can probe different aspects of QCD effects ◮ test latest higher order calculations and MC based event generators ◮ studying multiple gluon emissions and test the models with high accuracy of soft gluon resummation 2

  3. Theoretical prediction for cross section ◮ MADGRAPH5 AMC@NLO + Pythia8 (denoted as LO MG5 a MC ) ◮ LO matrix element up to 4 partons ◮ k T -MLM merging ◮ NNPDF3.0 NLO PDF, CUETP8M1 Pythia8 tune ◮ MADGRAPH5 AMC@NLO + Pythia8 (denoted as NLO MG5 a MC ) ◮ NLO matrix element up to 2 partons (LO accuracy for 3 partons) ◮ FxFx jet merging ◮ NNPDF3.0 NLO PDF, CUETP8M1 Pythia8 tune ◮ Z+1 jet fixed order NNLO (Phys. Rev. Lett. 115, 062002) ◮ Correction for hadronization and multiple parton interaction computed with MADGRAPH5 AMC@NLO + Pythia8 ◮ CT14 PDF 3

  4. Two models with improved soft gluon resummation treatment: ◮ Geneva 1.0-RC2 + Pythia8 (arXiv:1508.01475) ◮ NNLL’+NNLO matched to PS ◮ Use n-jettiness (PRL 105, 092002 (2010)) to separate N-jet and inclusive (N+1)-jet region, here τ 0 and τ 1 ◮ τ 0 ( ≡ beam-thrust, � particles E i − | p z , i | ) dependence resummed at NNLL’ ◮ d σ ≥ 0 j at NNLO, d σ ≥ 1 j at NLO, d σ ≥ 2 j at LO, ◮ PDF4LHC15 NNLO; α s ( m Z ) = 0 . 118 and 0 . 1135 (for ME and PS) ◮ Specific Pythia8 tune based on CUETP8M1 ◮ DYRes 1.0 (JHEP12(2015)047) (shown for p T of the Z boson for N jets ≥ 0) ◮ NNLL+NNLO fixed order calculation ◮ NNPDF 3.1 NNLO and α s ( m Z ) =0.118 4

  5. Transverse momentum of the Z boson for N jets ≥ 0 ≤ MG5_aMC + PY8 ( 2j NLO + PS) (Z) [pb/GeV] ≤ MG5_aMC + PY8 ( 2j NLO + PS) MC study 45 ≤ MG5_aMC + PY8 ( 4j LO + PS) GE + PY8 (NNLL' +NNLO ) 40 τ 0 DYRes (NNLL + NNLO) 35 30 T /dp NLO MG5 a MC + Pythia8 25 σ d LO MG5 a MC + Pythia8 20 15 Geneva (NNLL’+NNLO) + Pythia8 with γ → Z/ * ll 10 α s ( m Z ) = 0 . 118 and 0 . 1135 (dashed line) 5 DYRes NNLL+NNLO 1.4 MG5_aMC Prediction The ratio is taken with respect to NLO 1.2 1 MG5 a MC 0.8 0.6 ⊕ ⊕ ⊕ α Stat. theo. PDF unc. s Theoretical uncertainties are included for 1.4 MG5_aMC Prediction 1.2 NLO MG5 a MC and Geneva 1 0.8 0.6 Stat. unc. 1.4 High p T : MG5_aMC Prediction 1.2 1 ◮ predictions with beyond LO ME 0.8 α ⊕ ⊕ agrees with each other 0.6 Stat. Stat. theo. unc. theo. unc. = 0.1135 s 1.4 ◮ LO MG5 a MC is below NLO Prediction MG5_aMC 1.2 1 MG5 a MC 0.8 0.6 Stat. unc. 2 3 10 10 10 p (Z) [GeV] 5 T

  6. Transverse momentum of the Z boson for N jets ≥ 0 Small p T : ≤ MG5_aMC + PY8 ( 2j NLO + PS) (Z) [pb/GeV] ≤ ◮ both MG5 a MC are based of Pythia8 CUETP8M1 MG5_aMC + PY8 ( 2j NLO + PS) MC study 45 ≤ MG5_aMC + PY8 ( 4j LO + PS) ◮ all the predictions except Geneva are similar 40 GE + PY8 (NNLL' +NNLO ) τ 0 DYRes (NNLL + NNLO) 35 30 T /dp 25 σ d Parameters Geneva tune 20 CUETP8M1 MultipartonInteractions:pT0Ref 2.4024 2.27 15 γ → Z/ * ll MultipartonInteractions:ecmPow 0.25208 0.25208 10 MultipartonInteractions:expPow 1.6 1.6 5 MultipartonInteractions:alphaSvalue 0.130 0.118 (0.1135) 1.4 ColourReconnection:range 1.8 1.55 Prediction MG5_aMC 1.2 SpaceShower:pT0Ref 2.0 1.22 1 SpaceShower:alphaSvalue 0.1365 0.118 (0.1135) 0.8 ⊕ ⊕ ⊕ α 0.6 Stat. theo. PDF unc. TimeShower:alphaSvalue 0.1365 0.118 (0.1135) s 1.4 BeamRemnants:primordialKThard 1.8 0.32 Prediction MG5_aMC 1.2 1 0.8 0.6 Stat. unc. Primordial k T is reduced in Geneva − → less phase space 1.4 MG5_aMC Prediction 1.2 for parton shower and more from the first principle 1 0.8 α 0.6 Stat. Stat. ⊕ ⊕ theo. unc. theo. unc. = 0.1135 s ◮ Geneva : lower value 0.1135 for α s ( m Z ) shows better 1.4 MG5_aMC Prediction 1.2 agreement with NLO MG5 a MC 1 0.8 ◮ Geneva : no systematic attempt made to tune the 0.6 Stat. unc. 2 3 10 10 10 parton shower. Impact of the parton shower tuning p (Z) [GeV] T need to be understood. 6

  7. Jets ◮ By requiring a jet one sensitive to hard gluon radiation in the central region ◮ Possibly to test higher order calculations at high transverse momentum ≤ MG5_aMC + PY8 ( 2j NLO + PS) [pb] MC study ≤ MG5_aMC + PY8 ( 2j NLO + PS) 3 10 ≤ MG5_aMC + PY8 ( 4j LO + PS) jets /dN GE + PY8 (NNLL' +NNLO ) 2 τ 0 10 σ d ◮ Jet selection: p T > 30 GeV, | y | < 2 . 4 , 10 separation from the dressed lepton of 1 ∆ R > 0 . 4 − 1 10 anti-k (R = 0.4) Jets T jet jet ◮ LO MG5 a MC and NLO MG5 a MC show p > 30 GeV, |y | < 2.4 − 2 10 T γ → Z/ * ll slightly different distribution: more high jet 1.4 Prediction MG5_aMC 1.2 event for NLO MG5 a MC 1 0.8 ◮ In Geneva third jet is described by PS . No ⊕ ⊕ ⊕ α 0.6 Stat. theo. PDF unc. s 1.4 MG5_aMC systematic attempt made to tune the parton Prediction 1.2 1 shower → disagreements in the central value 0.8 0.6 Stat. unc. with the data are expected for N jets ≥ 3 1.4 MG5_aMC Prediction 1.2 1 0.8 α 0.6 Stat. Stat. ⊕ ⊕ theo. unc. theo. unc. = 0.1135 s = 0 = 1 = 2 = 3 = 4 = 5 = 6 7 N jets

  8. Jet kinematics Leading jet p T : Subleading jet p T : ≤ MG5_aMC + PY8 ( 2j NLO + PS) ) [pb/GeV] MG5_aMC + PY8 ( ≤ 2j NLO + PS) MC study 10 ≤ MG5_aMC + PY8 ( 4j LO + PS) GE + PY8 (NNLL' +NNLO ) τ 0 N NNLO (1j NNLO) jetti ≤ 1 MG5_aMC + PY8 ( 2j NLO + PS) (j 1 ) [pb/GeV] T MC study ≤ MG5_aMC + PY8 ( 2j NLO + PS) /dp ≤ σ MG5_aMC + PY8 ( 4j LO + PS) d − 10 1 GE + PY8 (NNLL' +NNLO ) 1 τ 0 2 (j T anti-k (R = 0.4) Jets /dp T − 2 jet jet 10 p > 30 GeV, |y | < 2.4 T γ γ → → ≥ σ − Z/ Z/ * * ll, N ll 1 1 10 d jets 1.4 MG5_aMC Prediction 1.2 anti-k (R = 0.4) Jets 1 T jet − jet 10 2 p > 30 GeV, |y | < 2.4 0.8 T γ γ → → ≥ Z/ Z/ * * ll, N ll 2 0.6 Stat. ⊕ theo. ⊕ PDF ⊕ α unc. jets s 1.4 1.4 MG5_aMC Prediction 1.2 MG5_aMC Prediction 1.2 1 1 0.8 0.8 0.6 Stat. unc. 0.6 Stat. ⊕ theo. ⊕ PDF ⊕ α unc. s 1.4 1.4 MG5_aMC Prediction 1.2 Prediction MG5_aMC 1.2 1 1 0.8 0.8 ⊕ ⊕ α 0.6 Stat. Stat. theo. unc. theo. unc. = 0.1135 0.6 Stat. unc. s 1.4 1.4 Prediction MG5_aMC MG5_aMC 1.2 Prediction 1.2 1 1 0.8 0.8 ⊕ α 0.6 Stat. theo. unc. 0.6 Stat. Stat. ⊕ ⊕ theo. unc. theo. unc. = 0.1135 s 50 100 150 200 250 300 350 400 50 100 150 200 250 p (j ) [GeV] p (j ) [GeV] T 1 T 2 ◮ LO MG5 a MC has slightly different shape w.r.t NLO MG5 a MC ◮ Leading jet p T : Z+1 jet fixed order NNLO is similar to NLO MG5 a MC within the theory uncertainty; increase theory precision for NNLO calculation ◮ Subleading jet p T : Geneva undershoots NLO MG5 a MC at low p T 8

  9. Jet kinematics CMS-PAS-SMP-15-010 Eur. Phys. J. C77 (2017) 361 (CMS leading jet p T in Z+jets events) (ATLAS leading jet p T in Z+jets events ) 10 2 [pb/GeV] + − γ → ≥ ATLAS Z/ *( l l ) + 1 jet 10 Data − 1 13 TeV, 3.16 fb Z + ≥ 1 jet N NNLO jetti 1 Z γ B H + S / LACK AT HERPA jet * + T ≥ S 2.2 /dp HERPA 1 j e 10 -1 t A LPGEN + P Y 6 σ Z/ γ * + MG5_aMC + P Y 8 CKKWL d ≥ 2 jets, 10 -2 MG5_aMC + P Y 8 FxFx × 10 − 1 Z/ γ -3 10 * + ≥ 3 jets, × 10 − -4 2 10 Z/ γ * + ≥ 4 jets, -5 10 × − 10 3 -6 10 anti-k jets, R = 0.4 t jet jet   10 -7 p > 30 GeV, y < 2.5 T Pred./Data 1.5 100 γ ≥ 200 300 400 500 600 700 Z/ * + 1 jet 1 0.5 Pred./Data 1.5 100 200 300 400 500 600 700 γ ≥ Z/ * + 2 jets 1 0.5 100 200 300 400 500 600 700 jet p (leading jet) [GeV] T ◮ At high p T LO ME model does not describe the measurements → NLO correction is needed ◮ NNLO ME model describes the measurements as good as NLO ME model 9

  10. Transverse momentum of the Z boson for N jets ≥ 1 ≤ MG5_aMC + PY8 ( 2j NLO + PS) (Z) [pb/GeV] 4 MC study ≤ MG5_aMC + PY8 ( 2j NLO + PS) ≤ 3.5 MG5_aMC + PY8 ( 4j LO + PS) At least one jet requirement shift the peak GE + PY8 (NNLL' +NNLO ) τ 0 3 toward the higher value → anti-k (R = 0.4) Jets possibility of studying multiple gluon 2.5 T T jet jet /dp p > 30 GeV, |y | < 2.4 T emissions away from the non-perturbative γ γ → → ≥ Z/ Z/ * * ll, N ll 1 2 σ jets region d 1.5 1 High p T : 0.5 ◮ LO MG5 a MC is below NLO MG5 a MC 1.4 MG5_aMC Prediction 1.2 ◮ Geneva agrees with NLO MG5 a MC 1 0.8 Small p T : ⊕ ⊕ ⊕ α 0.6 Stat. theo. PDF unc. s ◮ Geneva is below NLO MG5 a MC by 1.4 MG5_aMC Prediction 1.2 20 % , the difference is more 1 pronounced than in inclusive scenario 0.8 0.6 Stat. unc. ◮ Geneva : use of the lower value 1.4 MG5_aMC Prediction 0.1135 for α s ( m Z ) improves only the 1.2 1 first bin 0.8 α ⊕ ⊕ = 0.1135 0.6 Stat. Stat. theo. unc. theo. unc. s 2 3 10 10 10 p (Z) [GeV] 10 T

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend