yang baxter equation and discrete conformal symmetry
play

Yang-Baxter equation and discrete conformal symmetry Vladimir - PowerPoint PPT Presentation

Yang-Baxter equation and discrete conformal symmetry Vladimir Bazhanov Department of Theoretical Physics Research School of Physical Sciences and Engineering The Australian National University Discrete Differential Geometry, Berlin, July,


  1. Yang-Baxter equation and discrete conformal symmetry Vladimir Bazhanov Department of Theoretical Physics Research School of Physical Sciences and Engineering The Australian National University Discrete Differential Geometry, Berlin, July, 15-19, 2007. [work with V.Mangazeev and S.Sergeev] V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 1 / 19

  2. Connection between statistical mechanics and discrete geometry Exactly solvable models: Yang-Baxter equation, Yang (1967), Baxter (1972), Faddeev-Volkov solution (1992-94) Discrete Riemann mapping theorem. Thurston (1985), Rodin-Sullivan (1987), Stephenson (1987), He-Schramm (1998), ... Discrete analytic functions: Bobenko-& Pinkall (1996), -& Suris (2002), -& Mercat and Suris. Variational principle for circle patterns: Bobenko-Springborn (2002) Topological invariants, braid group, invariants of links, rhombic tilings . . . “Z-invariant” lattices, Baxter (1989) and invariants of links, Jones (1987) Planar embeddings of quad-graphs, Kenyon-Schlenker (2005) Hyperbolic geometry: volumes of polyhedra in the Lobachevskii 3-space Conformal Field Theory, Belavin-Polyakov-Zamolodchikov (1984), A discrete analog? V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 2 / 19

  3. Yang-Baxter equation in statistical mechanics local “spins”: σ i ∈ (set of values) e − E ( σ ) / T , X X Z = E ( { σ } ) = ǫ ( σ i , σ j ) , { spins } ( ij ) ∈ edges W ( σ i , σ j ) = e − ǫ ( σ i ,σ j ) / T X Y W ( σ i , σ j ) = Trace ( T ) m , Z = { spins } ( ij ) ∈ edges Hard to calculate if number of edges, N → ∞ Ising model, dimers, . . . , ⇒ free fermions. “Gaussian models”, reduce to diagonalization of a quadratic form, Pfaffians and determinants. The Boltzmann weights satisfy the Yang-Baxter equation. Commuting transfer-matrices Z = Trace ( T q 1 T q 2 · · · T q m ) , [ T q , T q ′ ] = 0 . V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 3 / 19

  4. θ = p − q , σ, a , b ∈ R W θ ( a − b ) = W π − θ ( a − b ) Yang-Baxter equation Star-triangle relation: Z d σ W q − r ( a − σ ) W p − r ( c − σ ) W p − q ( σ − b ) = W p − q ( c − a ) W p − r ( a − b ) W q − r ( c − b ) . R V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 4 / 19

  5. V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 5 / 19

  6. V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 6 / 19

  7. Z Y Y Z = W θ ( ij ) ( σ i − σ j ) d σ i i ( ij ) Partition function Z possesses a remarkable invariance property: it remains unchanged by continuously deforming the rapidity lines (with their boundary position kept fixed) Baxter (1979) factorization theorem. When N → ∞ √ X log Z = f ( θ ( ij ) ) + O ( N ) . ( ij ) V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 7 / 19

  8. Faddeev-Volkov model F θ e 2 ηθ s ϕ ( s + i ηθ/π ) 1 W θ ( s ) = ϕ ( s − i ηθ/π ) , W θ ( s ) = W π − θ ( s ) , (1) „ 1 e − 2i zw Z dw « ϕ ( z ) def = exp , (2) 4 sinh ( wb ) sinh ( w / b ) w R +i0 „ 1 e − 2i zw « Z dw Φ( z ) def = exp , (3) sinh( wb ) sinh( wb − 1 ) cosh( w ( b + b − 1 )) 8 w R +i0 η = ( b + b − 1 ) / 2 . (4) = e i η 2 θ 2 /π +i π (1 − 8 η 2 ) / 24 Φ(2i ηθ/π ) . def F θ (5) With this normalization the edge function f ( θ ) ≡ 0, i.e., √ log Z = O ( N ) , N → ∞ The model related with quantum Liouville and sinh-Gordon equations and the modular double of quantum group q = e i π b 2 , q = e − i π/ b 2 , U q ( sl 2 ) ⊗ U ˜ q ( sl 2 ) , ˜ Parameter b 2 > 0 plays the role of the Planck constant � . V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 8 / 19

  9. Quasi-classical expansion, b → 0 Z d ρ i 1 e − 2 π b 2 A [ ρ ] Y Z = 2 π b i „ 1 + e ξ +i θ Z ρ A ( θ | ρ ) = A ( θ | − ρ ) = 1 « log d ξ . e ξ + e i θ i 0 Z x log(1 − x ) “ e ρ − i θ ” “ e ρ +i θ ” A ( θ | ρ ) = i Li 2 − i Li 2 − θρ, Li 2 ( x ) = − dx . x 0 X ` ´ A [ ρ ] = A θ ( ij ) | ρ i − ρ j ( ij ) ∈ E ( G ) e ρ j + e ρ i +i θ ( ij ) ∂ A [ ρ ] ˛ Y ρ = ρ ( cl ) = 0 , ⇒ = 1 , i = ∈ V int ( G ) . ˛ e ρ i + e ρ i +i θ ( ij ) ∂ρ i ˛ ( ij ) ∈ star ( i ) A [ ρ ] precisely coincide with Bobenko-Springborn circle packing action. Our results imply that this action possesses the “ Z -invariance property” and that ∂ 2 A [ ρ ] √ ‚ ‚ 2 π b 2 A [ ρ ( cl ) ] − 1 1 ‚ ‚ log Z = − 2 log det + . . . = O ( N ) , N → ∞ ‚ ‚ ∂ρ i ∂ρ j ‚ ‚ ρ = ρ ( cl ) V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 9 / 19

  10. V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 10 / 19

  11. V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 11 / 19

  12. Kenyon-Schlenker: rhombic tilings, Bobenko-Mercat-Suris: isoradial circle patterns, this talk: “rapidity graph” or a braid. Sum rules X θ ( ij ) = 2 π, i ∈ V int ( G ) ( ij ) ∈ star ( i ) V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 12 / 19

  13. Discrete conformal transformations Continuous conformal transformations (i) preserve angles (ii) uniformly rescale all infinitesimal lengths (scale depends on a point) i log r 1 + r 2 e i θ ϕ 1 = 1 r 1 + r 2 e − i θ , (6) Circle flower equations (cross ratio system) X ϕ ( ij ) = 2 π, i ∈ V int ( G ) . (7) ( ij ) ∈ star ( i ) They are identical to the equation of motion in the Faddeev-Volkov model V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 13 / 19

  14. V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 14 / 19

  15. V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 15 / 19

  16. Discrete conformal transformations Continuous conformal transformations (i) preserve angles (ii) uniformly rescale all infinitesimal lengths (scale depends on a point) i log r 1 + r 2 e i θ ϕ 1 = 1 r 1 + r 2 e − i θ , (8) Circle flower equations (cross ratio system) X ϕ ( ij ) = 2 π, i ∈ V int ( G ) . (9) ( ij ) ∈ star ( i ) They are identical to the equation of motion in the Faddeev-Volkov model V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 16 / 19

  17. V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 17 / 19

  18. Star-triangle relation and hyperbolic geometry e half-space model { x , y , z ∈ R | z > 0 } , ds 2 = ( dx 2 + dy 2 + dz 2 ) / z 2 . Poincar´ V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 18 / 19

  19. Star-triangle-circle relation V ⋆ = 2 L ( θ 1 2 ) + 2 L ( θ 2 2 ) + 2 L ( θ 3 2 ) + 1 2 A ⋆ [ ρ ( cl ) , ρ 1 , ρ 2 , ρ 3 ] + boundary term (10) 0 V △ = 2 L ( π − θ 1 ) + 2 L ( π − θ 2 ) + 2 L ( π − θ 3 ) + 1 2 A △ [ ρ 1 , ρ 2 , ρ 3 ] + boundary term (11) 2 2 2 V tetrahedron = V ⋆ − V △ = L ( θ 1 ) + L ( θ 2 ) + L ( θ 3 ) , (12) 2 L ( θ 2 ) − 2 L ( π − θ ) = L ( θ ) . (13) 2 V. Bazhanov (ANU) Quantum Circle Patterns Berlin, July 16, 2007 19 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend