continuous models of computation computability complexity
play

Continuous models of computation: computability, complexity, - PowerPoint PPT Presentation

Continuous models of computation: computability, complexity, universality Amaury Pouly Joint work with Olivier Bournez and Daniel Graa CNRS, IRIF, Universit Paris Diderot 26 march 2019 1 / 23 What is a computer? 2 / 23 What is a


  1. Continuous models of computation: computability, complexity, universality Amaury Pouly Joint work with Olivier Bournez and Daniel Graça CNRS, IRIF, Université Paris Diderot 26 march 2019 1 / 23

  2. What is a computer? 2 / 23

  3. What is a computer? 2 / 23

  4. What is a computer? VS 2 / 23

  5. Analog Computers Admiralty Fire Control Table Differential Analyser British Navy ships (WW2) “Mathematica of the 1920s” 3 / 23

  6. Church Thesis Computability logic boolean circuits discrete recursive Turing lambda functions machine calculus continuous quantum analog Church Thesis All reasonable models of computation are equivalent. 4 / 23

  7. Church Thesis Complexity logic boolean circuits discrete recursive Turing lambda functions machine calculus � ? ? continuous quantum analog Effective Church Thesis All reasonable models of computation are equivalent for complexity. 4 / 23

  8. Polynomial Differential Equations u × k uv k v u � + � u + v u u v General Purpose Analog Computer Differential Analyzer 5 / 23

  9. Polynomial Differential Equations u × k uv k v u � + � u + v u u v General Purpose Analog Computer Differential Analyzer polynomial differential equations : � y ( 0 )= y 0 y ′ ( t )= p ( y ( t )) 5 / 23

  10. Polynomial Differential Equations u × k uv k v u � + � u + v u u v General Purpose Analog Computer Differential Analyzer polynomial differential Newton mechanics equations : � y ( 0 )= y 0 y ′ ( t )= p ( y ( t )) Reaction networks : ◮ chemical ◮ enzymatic 5 / 23

  11. Polynomial Differential Equations u × k uv k v u � + � u + v u u v General Purpose Analog Computer Differential Analyzer polynomial differential Newton mechanics equations : � y ( 0 )= y 0 y ′ ( t )= p ( y ( t )) Reaction networks : ◮ chemical ◮ Rich class ◮ enzymatic ◮ Stable (+, × , ◦ ,/,ED) ◮ No closed-form solution 5 / 23

  12. Example of dynamical system ℓ θ m g θ + g ¨ ℓ sin( θ ) = 0 6 / 23

  13. Example of dynamical system ℓ θ m y ′   y 1 = θ 1 = y 2 g   y 2 = ˙ 2 = − g   y ′ θ l y 3   ⇔ y ′ y 3 = sin( θ ) 3 = y 2 y 4 θ + g ¨ ℓ sin( θ ) = 0     y ′ y 4 = cos( θ ) 4 = − y 2 y 3   6 / 23

  14. Example of dynamical system y 2 � � y 1 × ℓ y 3 y 4 − g � × ℓ θ m � × × − 1 y ′   y 1 = θ 1 = y 2 g   y 2 = ˙ 2 = − g   y ′ θ l y 3   ⇔ y ′ y 3 = sin( θ ) 3 = y 2 y 4 θ + g ¨ ℓ sin( θ ) = 0     y ′ y 4 = cos( θ ) 4 = − y 2 y 3   6 / 23

  15. Example of dynamical system y 2 � � y 1 × ℓ y 3 y 4 − g � × ℓ θ m � × × − 1 y ′   y 1 = θ 1 = y 2 g   y 2 = ˙ 2 = − g   y ′ θ l y 3   ⇔ y ′ y 3 = sin( θ ) 3 = y 2 y 4 θ + g ¨ ℓ sin( θ ) = 0     y ′ y 4 = cos( θ ) 4 = − y 2 y 3   Historical remark : the word “analog” The pendulum and the circuit have the same equation. One can study one using the other by analogy. 6 / 23

  16. Computing with differential equations Generable functions � y ( 0 )= y 0 x ∈ R y ′ ( x )= p ( y ( x )) f ( x ) = y 1 ( x ) y 1 ( x ) x Shannon’s notion 7 / 23

  17. Computing with differential equations Generable functions � y ( 0 )= y 0 x ∈ R y ′ ( x )= p ( y ( x )) f ( x ) = y 1 ( x ) y 1 ( x ) x Shannon’s notion sin , cos , exp , log , ... Strictly weaker than Turing machines [Shannon, 1941] 7 / 23

  18. Computing with differential equations Generable functions Computable � y ( 0 )= y 0 � y ( 0 )= q ( x ) x ∈ R x ∈ R y ′ ( x )= p ( y ( x )) y ′ ( t )= p ( y ( t )) t ∈ R + f ( x ) = y 1 ( x ) f ( x ) = lim t →∞ y 1 ( t ) y 1 ( x ) y 1 ( t ) x f ( x ) x t Shannon’s notion Modern notion sin , cos , exp , log , ... Strictly weaker than Turing machines [Shannon, 1941] 7 / 23

  19. Computing with differential equations Generable functions Computable � y ( 0 )= y 0 � y ( 0 )= q ( x ) x ∈ R x ∈ R y ′ ( x )= p ( y ( x )) y ′ ( t )= p ( y ( t )) t ∈ R + f ( x ) = y 1 ( x ) f ( x ) = lim t →∞ y 1 ( t ) y 1 ( x ) y 1 ( t ) x f ( x ) x t Shannon’s notion Modern notion sin , cos , exp , log , ... sin , cos , exp , log , Γ , ζ, ... Strictly weaker than Turing Turing powerful machines [Shannon, 1941] [Bournez et al., 2007] 7 / 23

  20. From discrete to real computability Computable Analysis : “Turing” computability over real numbers 8 / 23

  21. From discrete to real computability Computable Analysis : “Turing” computability over real numbers Definition (Ko, 1991; Weihrauch, 2000) x ∈ R is computable iff ∃ a computable f : N → Q such that : | x − f ( n ) | � 10 − n n ∈ N Examples : rational numbers, π , e , ... n f ( n ) | π − f ( n ) | 0 . 14 � 10 − 0 0 3 0 . 04 � 10 − 1 1 3.1 0 . 001 � 10 − 2 2 3.14 0 . 9 · 10 − 10 � 10 − 10 10 3.1415926535 8 / 23

  22. From discrete to real computability Computable Analysis : “Turing” computability over real numbers Definition (Ko, 1991; Weihrauch, 2000) x ∈ R is computable iff ∃ a computable f : N → Q such that : | x − f ( n ) | � 10 − n n ∈ N Examples : rational numbers, π , e , ... n f ( n ) | π − f ( n ) | 0 . 14 � 10 − 0 0 3 0 . 04 � 10 − 1 1 3.1 0 . 001 � 10 − 2 2 3.14 0 . 9 · 10 − 10 � 10 − 10 10 3.1415926535 Beware : there exists uncomputable real numbers! Γ = { n : the n th Turing machine halts } � 2 − n , x = n ∈ Γ 8 / 23

  23. From discrete to real computability f ( x ) f ( r ) x r ∈ Q 8 / 23

  24. From discrete to real computability f ( x ) ψ ( r , 0 ) � 10 − 0 f ( r ) x r ∈ Q Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , computable functions such that : ◮ effective approx over Q : | f ( r ) − ψ ( r , n ) | � 10 − n 8 / 23

  25. From discrete to real computability f ( x ) ψ ( r , 1 ) � 10 − 1 f ( r ) x r ∈ Q Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , computable functions such that : ◮ effective approx over Q : | f ( r ) − ψ ( r , n ) | � 10 − n 8 / 23

  26. From discrete to real computability f ( x ) ψ ( r , 2 ) � 10 − 2 f ( r ) x r ∈ Q Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , computable functions such that : ◮ effective approx over Q : | f ( r ) − ψ ( r , n ) | � 10 − n 8 / 23

  27. From discrete to real computability f ( x ) f ( y ) � 10 − 0 f ( x ) � 10 − m ( 0 ) x x y Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : ◮ effective approx over Q : | f ( r ) − ψ ( r , n ) | � 10 − n ◮ effective continuity : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n m : modulus of continuity 8 / 23

  28. From discrete to real computability f ( x ) � 10 − 1 f ( y ) f ( x ) � 10 − m ( 1 ) x x y Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : ◮ effective approx over Q : | f ( r ) − ψ ( r , n ) | � 10 − n ◮ effective continuity : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n m : modulus of continuity 8 / 23

  29. From discrete to real computability f ( x ) � 10 − 2 f ( y ) f ( x ) � 10 − m ( 2 ) x x y Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : ◮ effective approx over Q : | f ( r ) − ψ ( r , n ) | � 10 − n ◮ effective continuity : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n m : modulus of continuity 8 / 23

  30. From discrete to real computability Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : ◮ effective approx over Q : | f ( r ) − ψ ( r , n ) | � 10 − n ◮ effective continuity : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n m : modulus of continuity All computable functions are continuous! Examples : polynomials, sin , exp , √· Beware : there exists (continuous) uncomputable real functions! 8 / 23

  31. From discrete to real computability Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : ◮ effective approx over Q : | f ( r ) − ψ ( r , n ) | � 10 − n ◮ effective continuity : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n m : modulus of continuity All computable functions are continuous! Examples : polynomials, sin , exp , √· Beware : there exists (continuous) uncomputable real functions! Polytime complexity Add “polynomial time computable” everywhere. 8 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend