continuous models of computation computability complexity
play

Continuous models of computation: computability, complexity, - PowerPoint PPT Presentation

Continuous models of computation: computability, complexity, universality Amaury Pouly Joint work with Olivier Bournez and Daniel Graa 21 january 2019 1 / 21 What is a computer? 2 / 21 What is a computer? 2 / 21 What is a computer? VS


  1. Continuous models of computation: computability, complexity, universality Amaury Pouly Joint work with Olivier Bournez and Daniel Graça 21 january 2019 1 / 21

  2. What is a computer? 2 / 21

  3. What is a computer? 2 / 21

  4. What is a computer? VS 2 / 21

  5. Church Thesis Computability logic boolean circuits discrete recursive Turing lambda functions machine calculus continuous quantum analog Church Thesis All reasonable models of computation are equivalent. 3 / 21

  6. Church Thesis Complexity logic boolean circuits discrete recursive Turing lambda functions machine calculus � ? ? continuous quantum analog Effective Church Thesis All reasonable models of computation are equivalent for complexity. 3 / 21

  7. Polynomial Differential Equations u × k uv k v u � + � u + v u u v General Purpose Analog Computer Differential Analyzer polynomial differential Newton mechanics equations : � y ( 0 )= y 0 y ′ ( t )= p ( y ( t )) Reaction networks : ◮ chemical ◮ Rich class ◮ enzymatic ◮ Stable (+, × , ◦ ,/,ED) ◮ No closed-form solution 4 / 21

  8. Example of dynamical system ℓ θ m g θ + g ¨ ℓ sin( θ ) = 0 5 / 21

  9. Example of dynamical system ℓ θ m y ′   1 = y 2 y 1 = θ g   2 = − g y 2 = ˙  y ′  l y 3 θ   ⇔ y ′ 3 = y 2 y 4 y 3 = sin( θ ) θ + g ¨ ℓ sin( θ ) = 0     y ′ 4 = − y 2 y 3 y 4 = cos( θ )   5 / 21

  10. Example of dynamical system y 2 � � y 1 × ℓ y 3 y 4 − g � × ℓ θ m � × × − 1 y ′   1 = y 2 y 1 = θ g   2 = − g y 2 = ˙  y ′  l y 3 θ   ⇔ y ′ 3 = y 2 y 4 y 3 = sin( θ ) θ + g ¨ ℓ sin( θ ) = 0     y ′ 4 = − y 2 y 3 y 4 = cos( θ )   5 / 21

  11. Example of dynamical system y 2 � � y 1 × ℓ y 3 y 4 − g � × ℓ θ m � × × − 1 y ′   1 = y 2 y 1 = θ g   2 = − g y 2 = ˙  y ′  l y 3 θ   ⇔ y ′ 3 = y 2 y 4 y 3 = sin( θ ) θ + g ¨ ℓ sin( θ ) = 0     y ′ 4 = − y 2 y 3 y 4 = cos( θ )   Historical remark : the word “analog” The pendulum and the circuit have the same equation. One can study one using the other by analogy. 5 / 21

  12. Computing with differential equations Generable functions � y ( 0 )= y 0 x ∈ R y ′ ( x )= p ( y ( x )) f ( x ) = y 1 ( x ) y 1 ( x ) x Shannon’s notion 6 / 21

  13. Computing with differential equations Generable functions � y ( 0 )= y 0 x ∈ R y ′ ( x )= p ( y ( x )) f ( x ) = y 1 ( x ) y 1 ( x ) x Shannon’s notion sin , cos , exp , log , ... Strictly weaker than Turing machines [Shannon, 1941] 6 / 21

  14. Computing with differential equations Generable functions Computable � y ( 0 )= y 0 � y ( 0 )= q ( x ) x ∈ R x ∈ R y ′ ( x )= p ( y ( x )) y ′ ( t )= p ( y ( t )) t ∈ R + f ( x ) = y 1 ( x ) f ( x ) = lim t →∞ y 1 ( t ) y 1 ( x ) y 1 ( t ) x f ( x ) x t Shannon’s notion Modern notion sin , cos , exp , log , ... Strictly weaker than Turing machines [Shannon, 1941] 6 / 21

  15. Computing with differential equations Generable functions Computable � y ( 0 )= y 0 � y ( 0 )= q ( x ) x ∈ R x ∈ R y ′ ( x )= p ( y ( x )) y ′ ( t )= p ( y ( t )) t ∈ R + f ( x ) = y 1 ( x ) f ( x ) = lim t →∞ y 1 ( t ) y 1 ( x ) y 1 ( t ) x f ( x ) x t Shannon’s notion Modern notion sin , cos , exp , log , ... sin , cos , exp , log , Γ , ζ, ... Strictly weaker than Turing Turing powerful machines [Shannon, 1941] [Bournez et al., 2007] 6 / 21

  16. Equivalence with computable analysis Definition (Bournez et al, 2007) f computable by GPAC if ∃ p polynomial such that ∀ x ∈ [ a , b ] y ′ ( t ) = p ( y ( t )) y ( 0 ) = ( x , 0 , . . . , 0 ) satisfies | f ( x ) − y 1 ( t ) | � y 2 ( t ) et y 2 ( t ) − t →∞ 0. − − → y 1 ( t ) − t →∞ f ( x ) − − → y 1 ( t ) f ( x ) y 2 ( t ) = error bound x t 7 / 21

  17. Equivalence with computable analysis Definition (Bournez et al, 2007) f computable by GPAC if ∃ p polynomial such that ∀ x ∈ [ a , b ] y ′ ( t ) = p ( y ( t )) y ( 0 ) = ( x , 0 , . . . , 0 ) satisfies | f ( x ) − y 1 ( t ) | � y 2 ( t ) et y 2 ( t ) − t →∞ 0. − − → y 1 ( t ) − t →∞ f ( x ) − − → y 1 ( t ) f ( x ) y 2 ( t ) = error bound x t Theorem (Bournez et al, 2007) f : [ a , b ] → R computable 1 ⇔ f computable by GPAC 7 / 21

  18. Equivalence with computable analysis Definition (Bournez et al, 2007) f computable by GPAC if ∃ p polynomial such that ∀ x ∈ [ a , b ] y ′ ( t ) = p ( y ( t )) y ( 0 ) = ( x , 0 , . . . , 0 ) satisfies | f ( x ) − y 1 ( t ) | � y 2 ( t ) et y 2 ( t ) − t →∞ 0. − − → y 1 ( t ) − t →∞ f ( x ) − − → y 1 ( t ) f ( x ) y 2 ( t ) = error bound x t Theorem (Bournez et al, 2007) f : [ a , b ] → R computable 1 ⇔ f computable by GPAC 1. In Computable Analysis, a standard model over reals built from Turing machines. 7 / 21

  19. Complexity of analog systems ◮ Turing machines : T ( x ) = number of steps to compute on x 8 / 21

  20. Complexity of analog systems ◮ Turing machines : T ( x ) = number of steps to compute on x ◮ GPAC : Tentative definition T ( x ) = ?? y ′ = p ( y ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) f ( x ) x t 8 / 21

  21. Complexity of analog systems ◮ Turing machines : T ( x ) = number of steps to compute on x ◮ GPAC : Tentative definition T ( x , µ ) = y ′ = p ( y ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) f ( x ) x t 8 / 21

  22. Complexity of analog systems ◮ Turing machines : T ( x ) = number of steps to compute on x ◮ GPAC : Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) f ( x ) x t 8 / 21

  23. Complexity of analog systems ◮ Turing machines : T ( x ) = number of steps to compute on x ◮ GPAC : Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � x x t t 8 / 21

  24. Complexity of analog systems ◮ Turing machines : T ( x ) = number of steps to compute on x ◮ GPAC : Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � x x t t w ( t ) = y ( e e t ) w 1 ( t ) f ( x ) x t 8 / 21

  25. Complexity of analog systems ◮ Turing machines : T ( x ) = number of steps to compute on x ◮ GPAC : time contraction problem → open problem Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � x x t t w ( t ) = y ( e e t ) Something is wrong... w 1 ( t ) f ( x ) x All functions have constant t time complexity. 8 / 21

  26. Time-space correlation of the GPAC y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = q ( x ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � ˜ q ( x ) q ( x ) t t 9 / 21

  27. Time-space correlation of the GPAC y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = q ( x ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � ˜ q ( x ) q ( x ) t t extra component : w ( t ) = e t w ( t ) t 9 / 21

  28. Time-space correlation of the GPAC y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = q ( x ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � ˜ q ( x ) q ( x ) t t extra component : w ( t ) = e t Observation Time scaling costs “space”. � Time complexity for the GPAC w ( t ) must involve time and space! t 9 / 21

  29. Characterization of polynomial time Definition : L ∈ ANALOG-PTIME ⇔ ∃ p polynomial, ∀ word w | w | y ′ = p ( y ) � w i 2 − i y ( 0 ) = ( ψ ( w ) , | w | , 0 , . . . , 0 ) ψ ( w ) = i = 1 y 1 ( t ) 1 ψ ( w ) ℓ ( t ) = length of y − 1 10 / 21

  30. Characterization of polynomial time Definition : L ∈ ANALOG-PTIME ⇔ ∃ p polynomial, ∀ word w | w | y ′ = p ( y ) � w i 2 − i y ( 0 ) = ( ψ ( w ) , | w | , 0 , . . . , 0 ) ψ ( w ) = i = 1 accept : w ∈ L y 1 ( t ) 1 ψ ( w ) ℓ ( t ) = length of y computing − 1 satisfies 1. if y 1 ( t ) � 1 then w ∈ L 10 / 21

  31. Characterization of polynomial time Definition : L ∈ ANALOG-PTIME ⇔ ∃ p polynomial, ∀ word w | w | y ′ = p ( y ) � w i 2 − i y ( 0 ) = ( ψ ( w ) , | w | , 0 , . . . , 0 ) ψ ( w ) = i = 1 accept : w ∈ L 1 ψ ( w ) ℓ ( t ) = length of y computing − 1 y 1 ( t ) reject : w / ∈ L satisfies 2. if y 1 ( t ) � − 1 then w / ∈ L 10 / 21

  32. Characterization of polynomial time Definition : L ∈ ANALOG-PTIME ⇔ ∃ p polynomial, ∀ word w | w | y ′ = p ( y ) � w i 2 − i y ( 0 ) = ( ψ ( w ) , | w | , 0 , . . . , 0 ) ψ ( w ) = i = 1 accept : w ∈ L 1 forbidden y 1 ( t ) ψ ( w ) ℓ ( t ) = length of y poly( | w | ) computing − 1 reject : w / ∈ L satisfies 3. if ℓ ( t ) � poly( | w | ) then | y 1 ( t ) | � 1 10 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend