continuous models of computation computability complexity
play

Continuous models of computation: computability, complexity, - PowerPoint PPT Presentation

Continuous models of computation: computability, complexity, universality Amaury Pouly 21 mars 2017 1 / 19 Digital vs analog computers 2 / 19 Digital vs analog computers VS 2 / 19 Church Thesis Computability logic boolean circuits


  1. Continuous models of computation: computability, complexity, universality Amaury Pouly 21 mars 2017 1 / 19

  2. Digital vs analog computers 2 / 19

  3. Digital vs analog computers VS 2 / 19

  4. Church Thesis Computability logic boolean circuits discrete recursive Turing lambda functions machine calculus continuous quantum analog Church Thesis All reasonable models of computation are equivalent. 3 / 19

  5. Church Thesis Complexity logic boolean circuits discrete recursive Turing lambda functions machine calculus � ? ? continuous quantum analog Effective Church Thesis All reasonable models of computation are equivalent for complexity. 3 / 19

  6. Polynomial Differential Equations u × k uv k v u � + � u + v u u v General Purpose Analog Computer Differential Analyzer polynomial differential Newton mechanics equations : � y ( 0 )= y 0 y ′ ( t )= p ( y ( t )) Reaction networks : chemical Rich class enzymatic Stable (+, × , ◦ ,/,ED) No closed-form solution 4 / 19

  7. Example of dynamical system y 2 � � y 1 × ℓ y 3 y 4 − g � × ℓ θ m � × × − 1 θ + g ¨ ℓ sin( θ ) = 0 y ′  1 = y 2  y 1 = θ   2 = − g y 2 = ˙ y ′   l y 3 θ   ⇔ y ′ 3 = y 2 y 4 y 3 = sin( θ )    y ′  4 = − y 2 y 3 y 4 = cos( θ )   5 / 19

  8. Computing with the GPAC Generable functions � y ( 0 )= y 0 x ∈ R y ′ ( x )= p ( y ( x )) f ( x ) = y 1 ( x ) y 1 ( x ) x Shannon’s notion 6 / 19

  9. Computing with the GPAC Generable functions � y ( 0 )= y 0 x ∈ R y ′ ( x )= p ( y ( x )) f ( x ) = y 1 ( x ) y 1 ( x ) x Shannon’s notion sin , cos , exp , log , ... Strictly weaker than Turing machines [Shannon, 1941] 6 / 19

  10. Computing with the GPAC Generable functions Computable � y ( 0 )= y 0 � y ( 0 )= q ( x ) x ∈ R x ∈ R y ′ ( x )= p ( y ( x )) y ′ ( t )= p ( y ( t )) t ∈ R + f ( x ) = y 1 ( x ) f ( x ) = lim t →∞ y 1 ( t ) y 1 ( x ) y 1 ( t ) x f ( x ) x t Shannon’s notion Modern notion sin , cos , exp , log , ... Strictly weaker than Turing machines [Shannon, 1941] 6 / 19

  11. Computing with the GPAC Generable functions Computable � y ( 0 )= y 0 � y ( 0 )= q ( x ) x ∈ R x ∈ R y ′ ( x )= p ( y ( x )) y ′ ( t )= p ( y ( t )) t ∈ R + f ( x ) = y 1 ( x ) f ( x ) = lim t →∞ y 1 ( t ) y 1 ( x ) y 1 ( t ) x f ( x ) x t Shannon’s notion Modern notion sin , cos , exp , log , ... sin , cos , exp , log , Γ , ζ, ... Strictly weaker than Turing Turing powerful machines [Shannon, 1941] [Bournez et al., 2007] 6 / 19

  12. From discrete to real computability Computable Analysis : lift Turing computability to real numbers [Ko, 1991; Weihrauch, 2000] 7 / 19

  13. From discrete to real computability Computable Analysis : lift Turing computability to real numbers [Ko, 1991; Weihrauch, 2000] Definition x ∈ R is computable iff ∃ a computable f : N → Q such that : | x − f ( n ) | � 10 − n n ∈ N Examples : rational numbers, π , e , ... n f ( n ) | π − f ( n ) | 0 . 14 � 10 − 0 0 3 0 . 04 � 10 − 1 1 3.1 0 . 001 � 10 − 2 2 3.14 0 . 9 · 10 − 10 � 10 − 10 10 3.1415926535 7 / 19

  14. From discrete to real computability Computable Analysis : lift Turing computability to real numbers [Ko, 1991; Weihrauch, 2000] Definition x ∈ R is computable iff ∃ a computable f : N → Q such that : | x − f ( n ) | � 10 − n n ∈ N Examples : rational numbers, π , e , ... n f ( n ) | π − f ( n ) | 0 . 14 � 10 − 0 0 3 0 . 04 � 10 − 1 1 3.1 0 . 001 � 10 − 2 2 3.14 0 . 9 · 10 − 10 � 10 − 10 10 3.1415926535 Beware : there exists uncomputable real numbers! 7 / 19

  15. From discrete to real computability f ( x ) f ( x ) x x 7 / 19

  16. From discrete to real computability f ( x ) f ( y ) � 10 − 0 f ( x ) � 10 − m ( 0 ) x x y Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , computable functions such that : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n x , y ∈ R , n ∈ N m : modulus of continuity 7 / 19

  17. From discrete to real computability f ( x ) � 10 − 1 f ( y ) f ( x ) � 10 − m ( 1 ) x x y Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n x , y ∈ R , n ∈ N m : modulus of continuity 7 / 19

  18. From discrete to real computability f ( x ) � 10 − 2 f ( y ) f ( x ) � 10 − m ( 2 ) x x y Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n x , y ∈ R , n ∈ N m : modulus of continuity 7 / 19

  19. From discrete to real computability f ( x ) ψ ( r , 0 ) � 10 − 0 f ( r ) x r ∈ Q Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n x , y ∈ R , n ∈ N | f ( r ) − ψ ( r , n ) | � 10 − n r ∈ Q , n ∈ N 7 / 19

  20. From discrete to real computability f ( x ) ψ ( r , 1 ) � 10 − 1 f ( r ) x r ∈ Q Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n x , y ∈ R , n ∈ N | f ( r ) − ψ ( r , n ) | � 10 − n r ∈ Q , n ∈ N 7 / 19

  21. From discrete to real computability f ( x ) ψ ( r , 2 ) � 10 − 2 f ( r ) x r ∈ Q Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n x , y ∈ R , n ∈ N | f ( r ) − ψ ( r , n ) | � 10 − n r ∈ Q , n ∈ N 7 / 19

  22. From discrete to real computability Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n x , y ∈ R , n ∈ N | f ( r ) − ψ ( r , n ) | � 10 − n r ∈ Q , n ∈ N Examples : polynomials, sin , exp , √· Note : all computable functions are continuous Beware : there exists (continuous) uncomputable real functions! 7 / 19

  23. From discrete to real computability Definition (Computable function) f : [ a , b ] → R is computable iff ∃ m : N → N , ψ : Q × N → Q computable functions such that : | x − y | � 10 − m ( n ) ⇒ | f ( x ) − f ( y ) | � 10 − n x , y ∈ R , n ∈ N | f ( r ) − ψ ( r , n ) | � 10 − n r ∈ Q , n ∈ N Examples : polynomials, sin , exp , √· Note : all computable functions are continuous Beware : there exists (continuous) uncomputable real functions! Polytime complexity Add “polynomial time computable” everywhere. 7 / 19

  24. Equivalence with computable analysis Definition (Bournez et al) f computable by GPAC if ∃ p polynomial such that ∀ x y ′ ( t ) = p ( y ( t )) y ( 0 ) = ( x , 0 , . . . , 0 ) satisfies | f ( x ) − y 1 ( t ) | � y 2 ( t ) et y 2 ( t ) − t →∞ 0. − − → y 1 ( t ) − t →∞ f ( x ) − − → y 1 ( t ) f ( x ) y 2 ( t ) = error bound x t 8 / 19

  25. Equivalence with computable analysis Definition (Bournez et al) f computable by GPAC if ∃ p polynomial such that ∀ x y ′ ( t ) = p ( y ( t )) y ( 0 ) = ( x , 0 , . . . , 0 ) satisfies | f ( x ) − y 1 ( t ) | � y 2 ( t ) et y 2 ( t ) − t →∞ 0. − − → y 1 ( t ) − t →∞ f ( x ) − − → y 1 ( t ) f ( x ) y 2 ( t ) = error bound x t Theorem (Bournez, Campagnolo, Graça, Hainry) f : [ a , b ] → R computable ⇔ f computable by GPAC 8 / 19

  26. Complexity of analog systems Turing machines : T ( x ) = number of steps to compute on x 9 / 19

  27. Complexity of analog systems Turing machines : T ( x ) = number of steps to compute on x GPAC : time contraction problem Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) f ( x ) x t 9 / 19

  28. Complexity of analog systems Turing machines : T ( x ) = number of steps to compute on x GPAC : time contraction problem Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � x x t t 9 / 19

  29. Complexity of analog systems Turing machines : T ( x ) = number of steps to compute on x GPAC : time contraction problem Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � x x t t w ( t ) = y ( e e t ) w 1 ( t ) f ( x ) x t 9 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend