continuous models of computation computability complexity
play

Continuous models of computation: computability, complexity, - PowerPoint PPT Presentation

Continuous models of computation: computability, complexity, universality Amaury Pouly Joint work with Olivier Bournez and Daniel Graa 29 january 2018 1 / 21 Teaser Characterization of P using differential equations Universal differential


  1. Continuous models of computation: computability, complexity, universality Amaury Pouly Joint work with Olivier Bournez and Daniel Graça 29 january 2018 1 / 21

  2. Teaser Characterization of P using differential equations Universal differential equation Chemical Reaction Networks 2 / 21

  3. Digital vs analog computers 3 / 21

  4. Digital vs analog computers VS 3 / 21

  5. Church Thesis Computability logic boolean circuits discrete recursive Turing lambda functions machine calculus continuous quantum analog Church Thesis All reasonable models of computation are equivalent. 4 / 21

  6. Church Thesis Complexity logic boolean circuits discrete recursive Turing lambda functions machine calculus � ? ? continuous quantum analog Effective Church Thesis All reasonable models of computation are equivalent for complexity. 4 / 21

  7. Polynomial Differential Equations u × k uv k v u � + � u + v u u v General Purpose Analog Computer Differential Analyzer polynomial differential Newton mechanics equations : � y ( 0 )= y 0 y ′ ( t )= p ( y ( t )) Reaction networks : chemical Rich class enzymatic Stable (+, × , ◦ ,/,ED) No closed-form solution 5 / 21

  8. Example of dynamical system y 2 � � y 1 × ℓ y 3 y 4 − g � × ℓ θ m � × × − 1 θ + g ¨ ℓ sin( θ ) = 0 y ′  1 = y 2  y 1 = θ   2 = − g y 2 = ˙ y ′   l y 3 θ   ⇔ y ′ 3 = y 2 y 4 y 3 = sin( θ )    y ′  4 = − y 2 y 3 y 4 = cos( θ )   6 / 21

  9. Computing with differential equations Generable functions � y ( 0 )= y 0 x ∈ R y ′ ( x )= p ( y ( x )) f ( x ) = y 1 ( x ) y 1 ( x ) x Shannon’s notion 7 / 21

  10. Computing with differential equations Generable functions � y ( 0 )= y 0 x ∈ R y ′ ( x )= p ( y ( x )) f ( x ) = y 1 ( x ) y 1 ( x ) x Shannon’s notion sin , cos , exp , log , ... Strictly weaker than Turing machines [Shannon, 1941] 7 / 21

  11. Computing with differential equations Generable functions Computable � y ( 0 )= y 0 � y ( 0 )= q ( x ) x ∈ R x ∈ R y ′ ( x )= p ( y ( x )) y ′ ( t )= p ( y ( t )) t ∈ R + f ( x ) = y 1 ( x ) f ( x ) = lim t →∞ y 1 ( t ) y 1 ( x ) y 1 ( t ) x f ( x ) x t Shannon’s notion Modern notion sin , cos , exp , log , ... Strictly weaker than Turing machines [Shannon, 1941] 7 / 21

  12. Computing with differential equations Generable functions Computable � y ( 0 )= y 0 � y ( 0 )= q ( x ) x ∈ R x ∈ R y ′ ( x )= p ( y ( x )) y ′ ( t )= p ( y ( t )) t ∈ R + f ( x ) = y 1 ( x ) f ( x ) = lim t →∞ y 1 ( t ) y 1 ( x ) y 1 ( t ) x f ( x ) x t Shannon’s notion Modern notion sin , cos , exp , log , ... sin , cos , exp , log , Γ , ζ, ... Strictly weaker than Turing Turing powerful machines [Shannon, 1941] [Bournez et al., 2007] 7 / 21

  13. Equivalence with computable analysis Definition (Bournez et al, 2007) f computable by GPAC if ∃ p polynomial such that ∀ x y ′ ( t ) = p ( y ( t )) y ( 0 ) = ( x , 0 , . . . , 0 ) satisfies | f ( x ) − y 1 ( t ) | � y 2 ( t ) et y 2 ( t ) − t →∞ 0. − − → y 1 ( t ) − t →∞ f ( x ) − − → y 1 ( t ) f ( x ) y 2 ( t ) = error bound x t 8 / 21

  14. Equivalence with computable analysis Definition (Bournez et al, 2007) f computable by GPAC if ∃ p polynomial such that ∀ x y ′ ( t ) = p ( y ( t )) y ( 0 ) = ( x , 0 , . . . , 0 ) satisfies | f ( x ) − y 1 ( t ) | � y 2 ( t ) et y 2 ( t ) − t →∞ 0. − − → y 1 ( t ) − t →∞ f ( x ) − − → y 1 ( t ) f ( x ) y 2 ( t ) = error bound x t Theorem (Bournez et al, 2007) f : [ a , b ] → R computable ⇔ f computable by GPAC 8 / 21

  15. Complexity of analog systems Turing machines : T ( x ) = number of steps to compute on x 9 / 21

  16. Complexity of analog systems Turing machines : T ( x ) = number of steps to compute on x GPAC : time contraction problem Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) f ( x ) x t 9 / 21

  17. Complexity of analog systems Turing machines : T ( x ) = number of steps to compute on x GPAC : time contraction problem Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � x x t t 9 / 21

  18. Complexity of analog systems Turing machines : T ( x ) = number of steps to compute on x GPAC : time contraction problem Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � x x t t w ( t ) = y ( e e t ) w 1 ( t ) f ( x ) x t 9 / 21

  19. Complexity of analog systems Turing machines : T ( x ) = number of steps to compute on x GPAC : time contraction problem → open problem Tentative definition T ( x , µ ) = first time t so that | y 1 ( t ) − f ( x ) | � e − µ y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � x x t t w ( t ) = y ( e e t ) Problem w 1 ( t ) f ( x ) All functions have constant time x complexity. t 9 / 21

  20. Time-space correlation of the GPAC y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = q ( x ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � ˜ q ( x ) q ( x ) t t 10 / 21

  21. Time-space correlation of the GPAC y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = q ( x ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � ˜ q ( x ) q ( x ) t t extra component : w ( t ) = e t w ( t ) t 10 / 21

  22. Time-space correlation of the GPAC y ′ = p ( y ) z ( t ) = y ( e t ) y ( 0 ) = q ( x ) y 1 ( t ) z 1 ( t ) f ( x ) f ( x ) � ˜ q ( x ) q ( x ) t t extra component : w ( t ) = e t Observation Time scaling costs “space”. � Time complexity for the GPAC must involve time and space! w ( t ) t 10 / 21

  23. Complexity of solving polynomial ODEs y ′ ( t ) = p ( y ( t )) y ( 0 ) = x y ( t ) y ( t ) x x 11 / 21

  24. Complexity of solving polynomial ODEs y ′ ( t ) = p ( y ( t )) y ( 0 ) = x Theorem (TCS 2016) � � � � 2 − n in time � p If y ( t ) exists, one can compute p , q such that q − y ( t ) � � poly ( size of x and p , n , ℓ ( t )) � t max( 1 , � y ( u ) � ) deg( p ) du ≈ length of the curve where ℓ ( t ) = 0 y ( t ) y ( t ) x x length of the curve = complexity = ressource 11 / 21

  25. Characterization of polynomial time Definition : L ∈ ANALOG-PTIME ⇔ ∃ p polynomial, ∀ word w | w | y ′ = p ( y ) � w i 2 − i y ( 0 ) = ( ψ ( w ) , | w | , 0 , . . . , 0 ) ψ ( w ) = i = 1 y 1 ( t ) 1 ψ ( w ) ℓ ( t ) = length of y − 1 12 / 21

  26. Characterization of polynomial time Definition : L ∈ ANALOG-PTIME ⇔ ∃ p polynomial, ∀ word w | w | y ′ = p ( y ) � w i 2 − i y ( 0 ) = ( ψ ( w ) , | w | , 0 , . . . , 0 ) ψ ( w ) = i = 1 accept : w ∈ L y 1 ( t ) 1 ψ ( w ) ℓ ( t ) = length of y computing − 1 satisfies if y 1 ( t ) � 1 then w ∈ L 1 12 / 21

  27. Characterization of polynomial time Definition : L ∈ ANALOG-PTIME ⇔ ∃ p polynomial, ∀ word w | w | y ′ = p ( y ) � w i 2 − i y ( 0 ) = ( ψ ( w ) , | w | , 0 , . . . , 0 ) ψ ( w ) = i = 1 accept : w ∈ L 1 ψ ( w ) ℓ ( t ) = length of y computing − 1 y 1 ( t ) reject : w / ∈ L satisfies if y 1 ( t ) � − 1 then w / ∈ L 2 12 / 21

  28. Characterization of polynomial time Definition : L ∈ ANALOG-PTIME ⇔ ∃ p polynomial, ∀ word w | w | y ′ = p ( y ) � w i 2 − i y ( 0 ) = ( ψ ( w ) , | w | , 0 , . . . , 0 ) ψ ( w ) = i = 1 accept : w ∈ L 1 forbidden y 1 ( t ) ψ ( w ) ℓ ( t ) = length of y poly( | w | ) computing − 1 reject : w / ∈ L satisfies if ℓ ( t ) � poly( | w | ) then | y 1 ( t ) | � 1 3 12 / 21

  29. Characterization of polynomial time Definition : L ∈ ANALOG-PTIME ⇔ ∃ p polynomial, ∀ word w | w | y ′ = p ( y ) � w i 2 − i y ( 0 ) = ( ψ ( w ) , | w | , 0 , . . . , 0 ) ψ ( w ) = i = 1 accept : w ∈ L y 1 ( t ) 1 forbidden y 1 ( t ) ψ ( w ) ℓ ( t ) = length of y poly( | w | ) computing − 1 y 1 ( t ) reject : w / ∈ L Theorem (JoC 2016; ICALP 2016) PTIME = ANALOG-PTIME 12 / 21

  30. Characterization of real polynomial time Definition : f : [ a , b ] → R in ANALOG-P R ⇔ ∃ p polynomial, ∀ x ∈ [ a , b ] y ′ = p ( y ) y ( 0 ) = ( x , 0 , . . . , 0 ) y 1 ( t ) f ( x ) x ℓ ( t ) 13 / 21

  31. Characterization of real polynomial time Definition : f : [ a , b ] → R in ANALOG-P R ⇔ ∃ p polynomial, ∀ x ∈ [ a , b ] y ′ = p ( y ) y ( 0 ) = ( x , 0 , . . . , 0 ) satisfies : | y 1 ( t ) − f ( x ) | � 2 − ℓ ( t ) 1 «greater length ⇒ greater precision» ℓ ( t ) � t 2 «length increases with time» y 1 ( t ) f ( x ) x ℓ ( t ) 13 / 21

  32. Characterization of real polynomial time Definition : f : [ a , b ] → R in ANALOG-P R ⇔ ∃ p polynomial, ∀ x ∈ [ a , b ] y ′ = p ( y ) y ( 0 ) = ( x , 0 , . . . , 0 ) satisfies : | y 1 ( t ) − f ( x ) | � 2 − ℓ ( t ) 1 «greater length ⇒ greater precision» ℓ ( t ) � t 2 «length increases with time» y 1 ( t ) f ( x ) x ℓ ( t ) Theorem (JoC 2016; ICALP 2016) f : [ a , b ] → R computable in polynomial time ⇔ f ∈ ANALOG-P R . 13 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend