real parameterized and 2 order complexity theory order
play

Real Parameterized and 2 Order Complexity Theory: Order Complexity - PowerPoint PPT Presentation

Real Parameterized and 2 nd nd Real Parameterized and 2 Order Complexity Theory: Order Complexity Theory: From Computability in Analysis From Computability in Analysis to Numerical Practice to Numerical Practice Martin Ziegler Martin


  1. Real Parameterized and 2 nd nd Real Parameterized and 2 Order Complexity Theory: Order Complexity Theory: From Computability in Analysis From Computability in Analysis to Numerical Practice to Numerical Practice Martin Ziegler Martin Ziegler

  2. TECHNISCHE �������� ���� ���������� �������� UNIVERSITÄT DARMSTADT, Martin Ziegler Real Parameterized and 2 nd -Order Complexity Theory: From Computability in Analysis to Numerical Practice Folklore: Folklore: Folklore: Folklore: For x ∈ � the following are equivalent: a) x has a decidable binary expansion b) x has a recursive signed-digit expansion c) There exists a recursive sequence ( a n ) ⊆ � s.t. | x – a n /2 n +1 | ≤ 2 - n numerics / iRRAM d) There exist recursive sequences ( p n ),( q n ) ⊆ � s.t. sup n p n = x = inf n q n Folklore: Folklore: Folklore: Folklore: Every computable f :[0;1] → � with f (0)· f (1)<0 has a computable root. i) only ���� uniformly Obstacles to practice: ii) no running time bound

  3. ������������� ���������� TECHNISCHE UNIVERSITÄT DARMSTADT, Martin Ziegler Real Parameterized and 2 nd -Order Complexity Theory: From Computability in Analysis to Numerical Practice Function f :[0,1] → � computable in time t computable in time ( n ) t ( n ) iRRAM if some TM can, on input of n ∈ � and of ( a m ) ⊆ � with | x-a m /2 m +1 | ≤ 2 - m ≡ ρ sd =: ρ .name p p output b ∈ � with | f ( x ) -b /2 n +1 | ≤ 2 - n . in time t in time ( n ) t ( n ) on [0;1] ! ��������� a) + + , , × × , , exp polytime exp n iff L ≡ ∑ ) ≡ ⊆ { ∑ n L ⊆ b) f 0 , 1 } decidable { 0 , 1 polytime. ( x - n * 4 - } * f ( x ) L 4 ∈ L n ∈ c) 1/ ) not polytime.computable c) sign Heaviside not computable 1/ln(e ln(e/ / x sign, , Heaviside x ) If ƒ ƒ computable ����������� i) i) If computable ⇒ ⇒ continuous. continuous. ����������� ii) ) If If f f computable computable in in time time t , then then ii ) , ( n t ( n ) ( t O ( ) is ) ) is a a modulus modulus of uniform of uniform continuity continuity of of f . O ( O( f . t ( ) ) O( n n )

  4. TECHNISCHE �������� ���������� �������� UNIVERSITÄT DARMSTADT, Martin Ziegler Real Parameterized and 2 nd -Order Complexity Theory: From Computability in Analysis to Numerical Practice ⊆ {0,1}* L ⊆ TM � � decides ⊆ { ���� � L {0,1}* is is verifiable verifiable in in polyn L ⊆ polyn. time . time if if ��� 0 , 1 }* ����������� TM decides set set L { 0 , 1 }* if if ����������� ∈ L x ∈ • on on inputs inputs x L prints n | prints 1 1 and and terminates terminates, ) : , • ∈ {0,1} ∈ � ∃ y ∈ {0,1 〈 x 〉 ∈ V x ∈ n ∈ , ∃ y ∈ : 〈 y 〉 ∈ { x V } } = { � , ( n q ( n ) L = {0,1} n | n {0,1} } q , y x , L ∉ L x ∉ • on on inputs inputs x L prints prints 0 0 and and terminates terminates. . • � and ∈ � ∈ � V ∈ q ∈ for some some V and q . for ] . [ N � [ N ] Example: : L Example 10 , 11 , 101 , 111 , 1011 , 1101 , ={ 10 , 11 , 101 , 111 , 1011 , 1101 , … …} } L ={ ����� �� � ∃ p ∈ � ��� � runs if ∃ p ∈ runs in in polynom polynom. time . time /space space / if [ N ]: � [ N ]: n makes ∈ { � on x ∈ � 0 , 1 } on input input x { 0 , 1 makes at at most most p ) steps steps } n ( n p ( n ) / uses uses at at most most p ) bits bits of of memory memory. . / ( n p ( n ) � � � � = { � � � � ⊆ { L ⊆ 0 , 1 }* ����� ��� { 0 , 1 ����� ��� decidable in in polynomial polynomial time time } = { L }* decidable } ⊆ �� �� �� = { �� �� �� �� �� ⊆ L ���������� ���������� in in polynomial polynomial time time } = { L } ⊆ ������ ������ ������ := { ������ ������ ������ ⊆ ������ ������ L decidable decidable in in polyn polyn. . space space } := { L } ⊆ ��� ��� = { ��� ��� ��� ⊆ ��� ��� ��� L decidable decidable in exponential time in exponential time } = { L }

  5. TECHNISCHE !��������� ���������� ������������ UNIVERSITÄT DARMSTADT, Martin Ziegler Real Parameterized and 2 nd -Order Complexity Theory: ƒ :[0;1] → [0;1] polytime computable ( ⇒ continuous) From Computability in Analysis to Numerical Practice [Friedman&Ko'82] [Friedman&Ko'82] ƒ → → Max( ƒ ): x → → max ƒ ( ≤ x Max: ƒ Max( ƒ { ƒ t ≤ • Max: ): x max{ ( t ): t x } } t ): ƒ ) Max( ƒ ) computable in exponential time; Max( polytime.computable iff � � � � = �� �� �� �� even when when even x ƒ restricting restricting • ∫ ∫ : ƒ → → ∫ ƒ ∫ ƒ : ( x → → ∫ ∫ 0 ƒ ( : ƒ x : ( x ( t ) dt ) t ) dt ) ƒ∈ C to ƒ∈ ∞ C ∞ to 0 ∫ ƒ computable in exponential time; ∫ ƒ �� �� � � � � .complete" � another class between �� and ������ × [ ∋ ƒ ƒ → → z ƒ ( : C[0;1] × 1;1] ∋ )= ƒ ż ( : ż • dsolve dsolve: C[0;1] [- -1;1] ( t ( t , z ), z (0)=0. z : t )= t , z ), z (0)=0 � in general no computable solution z ( t ) z ( t ) 1 ������ � for ƒ∈ ƒ∈ C ������ ."complete" ������ ������ [Kawamura'10, C 1 [Kawamura'10, k �� � for ƒ∈ ƒ∈ C Kawamura et al] et al] Kawamura �� ."hard" �� �� C k

  6. " Max �� �� �� �� �� #$���" TECHNISCHE UNIVERSITÄT DARMSTADT, Martin Ziegler Real Parameterized and 2 nd -Order Complexity Theory: From Computability in Analysis to Numerical Practice �� �� �� �� ∋ ⊆ � ∈ � � � � � �� �� �� �� ∋ L ∈ � ∃ M V ∈ � 〈 N,M � ⇔ f V polytime 〉 ∈ ∈ V V ∈ � � � N ∈ V ⊆ | ∃ : 〈 N,M 〉 � � polytime { N V } } , � � | = { L = , V <N : V M<N t → ∑ ϕ (2 tN ²-2 N )/ N ln N t → ∑ ϕ (3 tN ³-3 N ²- M )/ N ln N ∞ C ∞ g L : f V : C 1 〈 N , M 〉 ∈ V N 0.8 t ln(1/ t ) 0.6 0.4 0.2 0 -1 -0.5 0 0.5 1 φ ( φ ( t ) = exp( exp(- - t ²/1 /1- - t ²) ) t ) = t ² t ² pulse' function function ' pulse' ∞ ' C ∞ t = ⅓ t =½ C t =1 0 N =5 t =¼ N =3 N =2 N =4 N =1 polytime computable computable polytime M =0..3 M =0,1,2 M =1 M =0 M =0 �� there �� ∈ �� �� �� �� �� �� L ∈ To every every L there exists exists a a polytime polytime To ∞ function computable C function g → � � s.t.: s.t.: computable C ∞ :[0,1] → L :[0,1] g L ∋ t ∈ � � � � � � � � [0,1] ∋ L ∈ → max again polytime polytime iff iff L t → ] again max g | [0, [0,1] L | g L [0, t t ]

  7. TECHNISCHE ������� ���������� �������������% UNIVERSITÄT DARMSTADT, Martin Ziegler Real Parameterized and 2 nd -Order Complexity Theory: ƒ :[0;1] → [0;1] polytime computable ( ⇒ continuous) From Computability in Analysis to Numerical Practice [Friedman&Ko [ ƒ → → Max( ƒ ): x → → max ƒ ( ≤ x Max: ƒ Max( ƒ { ƒ t ≤ Friedman&Ko] • Max: ): x max{ ( t ): t x } } t ): ƒ ) Max( ƒ ) computable in exponential time; Max( even when polytime.computable iff � � � � = �� �� �� �� restricting x ƒ non. ���# . # ��� non ƒ∈ C • ∫ ∫ : ƒ → → ∫ ƒ ∫ ƒ : ( x → → ∫ ∫ 0 ƒ ( : ƒ x to ƒ∈ ∞ C ∞ : ( x ( t ) dt ) t ) dt ) ������� uniform ������� uniform 0 ��� ��� ��� ��� ∫ ƒ computable in exponential time; ∫ ƒ ] �������� ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ �������� [N.M [ � � � �� � ."complete" � � N.Mü �������� �������� × [ ∋ ƒ ƒ → → z ƒ ( : C[0;1] × 1;1] ∋ )= ƒ ż ( : ż • dsolve dsolve: C[0;1] [- -1;1] ( t ( t , z ), z (0)=0. z : t )= t , z ), z (0)=0 üller ller] � in general no computable solution z ( t ) z ( t ) 1 ������ ] � for ƒ∈ ƒ∈ C ������ ."complete" ������ ������ [Kawamura'10, C 1 [Kawamura'10, k �� � for ƒ∈ ƒ∈ C Kawamura et al] et al] Kawamura �� �� �� ."hard" C k

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend