mod elisation et m ethodes num eriques pour l etude du
play

Mod elisation et m ethodes num eriques pour l etude du transport - PowerPoint PPT Presentation

Mod elisation et m ethodes num eriques pour l etude du transport de particules dans un plasma S ebastien Guisset Soutenance de th` ese de lUniversit e de Bordeaux Talence, le 23 Septembre 2016 Directeur de th` ese :


  1. Mod´ elisation et m´ ethodes num´ eriques pour l’´ etude du transport de particules dans un plasma S´ ebastien Guisset Soutenance de th` ese de l’Universit´ e de Bordeaux Talence, le 23 Septembre 2016 Directeur de th` ese : St´ ephane Brull , Institut Math´ ematiques de Bordeaux Co-Directeur de th` ese : Emmanuel d’Humi` eres , Laboratoire Celia S´ ebastien GUISSET Study of particle transport in plasmas September 2016 1 / 46

  2. Physical context ֒ → Contribution to the modelling and numerical methods for the transport of charged particles in plasmas ֒ → Hot plasmas created by lasers General context: Understanding of the processes leading to ignition of the fusion reactions by inertial confinement Multiphysics processes: Related research areas: ◮ Laser-plasma absorption ◮ Hypersonic flows ◮ Neutron production ◮ Radiotherapy ◮ Radiative transfer ◮ Magnetic confinement fusion ◮ Transport of particles ◮ Astrophysics ֒ → long time regimes studies (hydrodynamics scales) S´ ebastien GUISSET Study of particle transport in plasmas September 2016 2 / 46

  3. Outline 1. Modelling in plasma physics: the angular moments models 2. Numerical methods for the study of the particle transport on large scales 3. First step towards multi-species modelling: the angular M 1 model in a moving frame 4. Conclusion / Perspectives S´ ebastien GUISSET Study of particle transport in plasmas September 2016 3 / 46

  4. Modelling Plasma: set of totally ionised atoms. Electronic transport, fixed ions Kinetic description: electron distribution function f ( t , x , v ), ֒ → Resolution of the Vlasov or Fokker-Planck-Landau equation ∂ f + q α ∂ t + v . ∇ x f m α ( E + v × B ) . ∇ v f = C ee ( f , f ) + C ei ( f ) , � �� � � �� � � �� � collisional terms advection term force term Accurate but numerically expensive (usually limited to short scales) Hydrodynamic description: cheap but less accurate for far equilibrium regimes ֒ → describe kinetic effects on fluid time scales is challenging! ֒ → Intermediate description, angular moment models. S´ ebastien GUISSET Study of particle transport in plasmas September 2016 4 / 46

  5. Angular moments models ֒ → Angular moments extraction: v = ζ Ω with ζ = | v | . � � � f 0 ( ζ ) = ζ 2 f 1 ( ζ ) = ζ 2 f 2 ( ζ ) = ζ 2 f ( v ) d Ω , f ( v )Ω d Ω , f ( v )Ω ⊗ Ω d Ω . S 2 S 2 S 2 Set of admissible states 1 � � ( f 0 , f 1 ) ∈ R × R 3 , f 0 ≥ 0 , A = | f 1 | ≤ f 0 . Angular moments model  ∂ t f 0 + ∇ x . ( ζ f 1 ) + q m ∂ ζ ( f 1 . E ) = 0 ,   ∂ t f 1 + ∇ x . ( ζ f 2 ) + q m ∂ ζ ( f 2 E ) − q m ζ ( f 0 E − f 2 E ) − q m ( f 1 ∧ B ) = 0 .   ֒ → Closure relation? 1 D. Kershaw, Tech. Report (1976). S´ ebastien GUISSET Study of particle transport in plasmas September 2016 5 / 46

  6. The P N closure Spherical Harmonic expansion 2 + ∞ n f ( t , x , ζ, Ω) = 1 � � A m n f m n ( t , x , ζ ) Y m n (Ω) , 4 π n =0 m = − n with n = (2 n + 1)( n − | m | )! Y m n (Ω) = P | m | (cos θ ) e im ϕ , A m , n ( n + | m | )! n ( z ) are the associated Legendre functions 3 . and P m ֒ → Positivity of the distribution function is required → Positive P N closure 4 ֒ → We prefer a closure based on a entropy minimisation criterion 5 ֒ 2 Pomraning, Pergamon Press (1973). 3 Abramowitz and Stegun. Dover Publications (1964). 4 Hauck and McLarreen. Siam J. Sci. Comput. (2010). 5 G.N. Minerbo, J. Quant. Spectrosc. Ra. (1978). S´ ebastien GUISSET Study of particle transport in plasmas September 2016 6 / 46

  7. The M 1 closure Determination of f 2 as a function of f 0 and f 1 : Entropy minimisation problem 6 , 7 . � � � � H ( f ) / ∀ ζ ∈ R + , ζ 2 ζ 2 min S 2 f (Ω , ζ ) d Ω = f 0 ( ζ ) , S 2 f (Ω , ζ )Ω d Ω = f 1 ( ζ ) , f ≥ 0 � with H ( f ) = ζ 2 S 2 ( f ln f − f ) d Ω . Entropy minimisation principle 8 : ◮ positivity f (Ω , ζ ) = exp( a 0 ( ζ ) + a 1 ( ζ ) . Ω) ≥ 0 , ◮ hyperbolicity ◮ entropy dissipation Expression of f 2 : � 1 − χ ( α ) Id + 3 χ ( α ) − 1 | f 1 | ⊗ f 1 f 1 � f 2 = f 0 , 2 2 | f 1 | χ ( α ) = 1 + | α | 2 + | α | 4 with , α = f 1 / f 0 . 3 6 G.N. Minerbo, J. Quant. Spectrosc. Ra. (1978). 7 D. Levermore, J. Stat. Phys. (1996). 8 B. Dubroca and J.L. Feugeas. C. R. Acad. Sci. Paris Ser. I (1999). S´ ebastien GUISSET Study of particle transport in plasmas September 2016 7 / 46

  8. Advantages and limitations of the M 1 model Advantages ◮ Intermediate models (compromise) ◮ Application to radiative transfer and radiotherapy ◮ Accurate for isotropic configurations or configurations with one dominant direction 9 Limitations ◮ Validity of angular moments models for kinetic plasma studies? ◮ Complex configurations in collisionless regimes 10 (not presented here, see chapter 2) ֒ → Adapted for collisional plasma applications 9 Dubroca, Feugeas and Frank. Eur. Phys. J. (2010). 10 Guisset, Moreau, Nuter, Brull, d’Humi` eres, Dubroca, Tikhonchuk. J. Phys. A Math. Theor. (2015). S´ ebastien GUISSET Study of particle transport in plasmas September 2016 8 / 46

  9. Collisional operators Electronic Fokker-Planck-Landau equation ∂ f ∂ t + v . ∇ x f + q m ( E + v × B ) . ∇ v f = C ee ( f , f ) + C ei ( f ) , � � v ′ ∈ R 3 S ( v − v ′ )[ ∇ v f ( v ) f ( v ′ ) − f ( v ) ∇ v f ( v ′ )] dv ′ � C ee ( f , f ) = α ee div v , � � 1 | u | 3 ( | u | 2 Id − u ⊗ u ) . C ei ( f ) = α ei div v S ( v ) ∇ v f ( v ) , S ( u ) = ֒ → C ee non-linear: complex angular moments extraction Simplification � F 0 = f 0 C ee ( f , f ) ≈ Q ee ( F 0 ) = C ee ( F 0 , F 0 ) 11 , 12 ζ 2 = S 2 fd Ω . ֒ → Angular moments extraction 11 Berezin, Khudick and Pekker J. Comput. Phys. (1987). 12 Buet and Cordier J. Comput. Phys. (1998). S´ ebastien GUISSET Study of particle transport in plasmas September 2016 9 / 46

  10. Collisional operators Electronic M 1 model:  � qE �  ∂ t f 0 + ∇ x . ( ζ f 1 ) + ∂ ζ m f 1 = Q 0 ( f 0 ) ,   � qE � − qE  ∂ t f 1 + ∇ x . ( ζ f 2 ) + ∂ ζ m f 2 m ζ ( f 0 − f 2 ) = Q 1 ( f 1 ) .   Collision operators � � ζ 2 A ( ζ ) ∂ ζ ( f 0 Q 1 ( f 1 ) = − α ei 2 f 1 Q 0 ( f 0 ) = α ee ∂ ζ ζ 2 ) − ζ B ( ζ ) f 0 , ζ 3 , � ∞ � ∞ min( 1 ζ 3 , 1 min( 1 ζ 3 , 1 µ 3 ) µ 3 ∂ µ ( f 0 ( µ ) µ 3 ) µ 2 f 0 ( µ ) d µ, A ( ζ ) = B ( ζ ) = µ 2 ) d µ. 0 0 ֒ → Admissibility requirement Modification: admissible M 1 model 13  � qE �  ∂ t f 0 + ∇ x . ( ζ f 1 ) + ∂ ζ m f 1 = Q 0 ( f 0 ) ,   � qE � − qE  ∂ t f 1 + ∇ x . ( ζ f 2 ) + ∂ ζ m f 2 m ζ ( f 0 − f 2 ) = Q 1 ( f 1 ) + Q 0 ( f 1 ) .   13 J. Mallet, S. Brull and B. Dubroca. KRM (2015). S´ ebastien GUISSET Study of particle transport in plasmas September 2016 10 / 46

  11. Collisional operators Fundamental properties of the M 1 collisional operators 14 , 15 : ◮ admissibility ◮ H-theorem (entropy dissipation) ◮ conservation properties ◮ caracterisation of the equilibrium states ֒ → Long time behavior: derivation of the plasma transport coefficients Boltzmann → Chapman-Enskog expansion: Navier-Stokes Fokker-Planck-Landau → Spitzer-H¨ arm approximation: Electron collisional hydrodynamics Electronic M 1 model → Spitzer-H¨ arm approximation: Electron collisional hydrodynamics ֒ → different plasma transport coefficients 14 Mallet, Brull, Dubroca. KRM (2015) 15 Guisset, Brull, Dubroca, d’Humi` eres, Tikhonchuk. Physica A (2016). S´ ebastien GUISSET Study of particle transport in plasmas September 2016 11 / 46

  12. Electron collisional hydrodynamics Strongly collisional fully ionised hot plasma: f ( t , x , ζ, Ω) = M f ( ζ, T e ( t , x ) , n e ( t , x )) + ε F ( t , x , ζ, Ω) , where ε = λ ei / L , m e ζ 2 � m e � 3 / 2 � � M f ( ζ, T e ( t , x ) , n e ( t , x )) = n e ( t , x ) exp − , 2 π T e ( t , x ) 2 T e ( t , x ) F ( t , x , ζ, Ω) = F 0 ( t , x , ζ ) + F 1 ( t , x , ζ ) . Ω . Density and energy conservation laws:  ∂ n e ∂ t + ∇ x . ( n e u e ) = 0 ,   ∂ T e ∂ t + u e . ∇ x ( T e ) + 2 2 2  3 T e ∇ x . ( u e ) + 3 n e ∇ x . ( q ) = 3 n e j . E ,  where � + ∞ � + ∞ j = − en e u e = − 4 π e q = 2 π F 1 ( m e ζ 2 − 5 T e ) ζ 3 d ζ. F 1 ζ 3 d ζ, 3 3 0 0 ֒ → Closure: derivation of F 1 S´ ebastien GUISSET Study of particle transport in plasmas September 2016 12 / 46

  13. Plasma transport coefficients Long time behavior � eE ∗ 2 T e ∇ x ( T e )( m e ζ 2 � 1 = − 2 α ei ζ 3 F 1 + 1 ζ 2 Q 0 ( ζ 2 F 1 ) , M f ζ T e + − 5) T e with E ∗ = E + (1 / en e ) ∇ x ( n e T e ) . → Solve an integro-differential equation 16 ֒ → Expansion 17 , 18 of F 1 on the generalised Laguerre polynomials ֒ Closure j = σ E ∗ + α ∇ x T e , q = − α T e E ∗ − χ ∇ x T e . 16 L. Spitzer and R. H¨ arm. Phys. Rev. (1953). 17 S.I. Braginskii. Rev. Plasma Phys. (1965). 18 S. Chapman. Phil. Trans. Roy. Soc. (1916). S´ ebastien GUISSET Study of particle transport in plasmas September 2016 13 / 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend