confinement in multi parton sectors of two dimensional
play

CONFINEMENT IN MULTI-PARTON SECTORS OF TWO DIMENSIONAL GAUGE - PowerPoint PPT Presentation

CONFINEMENT IN MULTI-PARTON SECTORS OF TWO DIMENSIONAL GAUGE THEORIES Daniele Dorigoni, Gabriele Veneziano, J W 1 How to calculate masses of particles ? Lattice Diagonalize Hamiltonian Light Cone Discretization QCD equations:


  1. CONFINEMENT IN MULTI-PARTON SECTORS OF TWO DIMENSIONAL GAUGE THEORIES Daniele Dorigoni, Gabriele Veneziano, J W 1 How to calculate masses of particles ? • Lattice • Diagonalize Hamiltonian • Light Cone Discretization • QCD equations: coupled Bethe-Salpeter equations on the LC • Simplifications: large N planar diagrams - single traces • less dimensions • even quantum mechanics (but at N → ∞ ) • supersymmetry 1

  2. 2 Planar gauge theory in 1+1 dimensions • The history FT on the light cone – C. Thorn (’77) Warm-up: D=1+1, QCD 2 – ’t Hooft (’74) LargeN fermions in funamental irrep − → no multiparton states. YM+with addjoint matter – Klebanov et al. (’93) matter = fermions or scalars ( = reduced Y M 3 ) SY M 2 – Matsumura et al. (’95) D=4 Wilson and Glazek (’93) Hiller et al. (’98) QCD 4 on the light cone – Brodsky et al. (since ’70) 2

  3. One way: Light Cone Discretization 2.1 ∞ n P + = i =1 p + p + i , i > 0 � � n =2 ∞ n K = i =1 r i , K, r i − natural , � � n =2 Cutoff K = ⇒ partitions { r 1 , r 2 , . . . } = ⇒ states |{ r }� = Tr [ a † ( r 1 ) a † ( r 2 ) ...a † ( r p )] | 0 � (1) ⇒ �{ r }| H |{ r ′ }� = |{ r }� = ⇒ E n 3

  4. Second way: integral equations in the continuum 2.2 • Different cutoff – directly in the continuum H | Φ � = M 2 | Φ � (2) ☛ ✟ | Φ � → Φ n ( x 1 , x 2 , . . . , x n ) ↔ ✡ ✠ ☛ ✟ ☛ ✟ ☛ ✟ ☛ ✟ ✏✏ ② PP ❤❤ ② ✭✭ ② ✭✭ ❤❤ PP ✏✏ = + + ✡ ✠ ✡ ✠ ✡ ✠ ✡ ✠ M 2 Φ n ( x 1 . . . x n ) = A ⊗ Φ n + B ⊗ Φ n − 2 + C ⊗ Φ n +2 (3) 4

  5. • Interpretation: proton is invariant against elementary processes • Fundamental: contain DGLAP and BFKL evolution eqns. • Emission and absorption are present (parton recombination) The cutoff: n ≤ n max (4) n max = 2 ’t Hooft equation – exact for QCD 2 (with fundamental fermions) 5

  6. • EQUATIONS ∞ � [ dx ] δ (1 − x 1 − x 2 − . . . x n )Φ n ( x 1 , x 2 , . . . x n ) Tr [ a † ( x 1 ) a † ( x 2 ) . . . a † ( x n )] | 0 � | Φ � = � n =2 EXAMPLE 1: QCD 2 ( fundamental fermions )  1 1  f ( x ) + λ � 1 dy   M 2 f ( x ) = m 2 x + ( y − x ) 2 [ f ( x ) − f ( y )] 1 − x π 0 f ( x ) = Φ 2 ( x, 1 − x ) 6

  7. EXAMPLE 2: SY M 2 restricted to the two-parton sector There are two coupled equations in the bosonic sector  1 1  φ bb ( x ) + λ φ bb ( x )   M 2 φ bb ( x ) = m 2 x + b � 1 − x 2 x (1 − x ) − 2 λ � 1 ( x + y )(2 − x − y ) [ φ bb ( y ) − φ bb ( x )] dy + λ � 1 1 φ ff ( y ) dy � ( y − x ) 2 � π 0 2 π 0 ( y − x ) x (1 − x ) y (1 − y ) x (1 − x ) 4  1 1    φ ff ( x ) M 2 φ ff ( x ) = m 2 x + f 1 − x − 2 λ � 1 [ φ ff ( y ) − φ ff ( x )] dy + λ � 1 1 φ bb ( y ) dy ( y − x ) 2 � π 0 2 π 0 ( x − y ) y (1 − y ) and the single one in the fermionic sector  m 2 x + m 2    φ bf ( x ) + 2 λ φ bf ( x ) f M 2 φ bf ( x ) = b √ x + x   1 − x π − 2 λ � 1 ( x + y ) [ φ bf ( y ) − φ bf ( x )] dy − λ � 1 1 φ bf ( y ) √ xy dy 2 √ xy ( y − x ) 2 π 0 2 π 0 (1 − y − x ) (5) 7

  8. Example 3: Y M 2 with addjoint fermionc matter - all parton-number sectors M 2 φ n ( x 1 . . . x n ) = m 2 φ n ( x 1 . . . x n ) x 1 + λ 1 � x 1 + x 2 dyφ n ( y, x 1 + x 2 − y, x 3 . . . x n ) ( x 1 + x 2 ) 2 π 0 + λ dy � x 1 + x 2 ( x 1 − y ) 2 { φ n ( x 1 , x 2 , x 3 . . . x n ) 0 π − φ n ( y, x 1 + x 2 − y, x 3 . . . x n ) }   + λ � x 1 � x 1 − y 1 1 dy dzφ n +2 ( y, z, x 1 − y − z, x 2 . . . x n ) ( y + z ) 2 −   ( x 1 − y ) 2 π 0 0     + λ 1 1 πφ n − 2 ( x 1 + x 2 + x 3 , x 4 . . . x n ) ( x 1 + x 2 ) 2 −   ( x 1 − x 3 ) 2   ± cyclic permutations of ( x 1 . . . x n ) 8

  9. 3 Coulomb divergences • IR divergencies (logarithmic) couple different multiplicity sectors • Coulomb divergencies (linear), but they cancel within one multiplicity • Can be done independently for each parton multiplicity p A possibility • − → Solve Coulomb problem first, and then successively add radiation Simplified Hamiltonian, SY M 2 reduced from SY M 4 (Dorigoni), keeping only Coulomb terms = λ � ∞ � k dq H quad q 2 Tr[ A † dk k A k ] (6) C 0 0 π = − g 2 � ∞ � p 1 dq � p 2 dq   H quartic q 2 Tr[ A † p 1 B † q 2 Tr( A † p 2 B † dp 1 dp 2 p 2 B p 2 + q A p 1 − q ] + p 1 B p 1 + q A p 2 − q ) C   2 π 0 0 0 (7) 9

  10. 4 Two partons | k, K − k � , k = 1 , .., K − 1 (8) � k | H | k ′ � ⇒ | Φ n � ⇒ Φ n ( k ) FT ⇒ Φ n ( d 12 ) (9) 1.0 0.5 0.5 0.8 0.4 0.4 0.6 0.3 0.3 0.4 0.2 0.2 0.2 0.1 0.1 0.0 0.0 0.0 � 100 � 50 0 50 100 � 100 � 50 0 50 100 � 100 � 50 0 50 100 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 � 100 � 50 0 50 100 � 100 � 50 0 50 100 � 50 0 50 100 Figure 1: ρ n ( d 12 ) , p = 2 , K = 200 , n = 1 , 25 , 50 , 100 , 150 , 199 . 10

  11. 5 Three partons - generalization of the ’t Hooft solution to many bodies | k 1 , k 2 , K − k 1 − k 2 � , k 1 = 1 , .., K − 2 , k 2 = 1 , .., K − k 1 − 1 (10) 2 � ⇒ | Φ n � ⇒ Φ n ( k 1 , k 2 ) FT � k 1 , k 2 | H | k ′ 1 , k ′ ⇒ Φ n ( d 13 , d 23 ) (11) 11

  12. Figure 2: ρ 1 ( d 13 , d 23 ) 12

  13. Figure 3: | ρ 10 ( d 13 , d 23 ) 13

  14. Figure 4: ρ 50 ( d 13 , d 23 ) 14

  15. Figure 5: ρ 100 ( d 13 , d 23 ) 15

  16. Figure 6: ρ 200 ( d 13 , d 23 ) 16

  17. Figure 7: ρ 300 ( d 13 , d 23 ) 17

  18. Figure 8: ρ 400 ( d 13 , d 23 ) 18

  19. The highest state Figure 9: ρ 406 ( d 13 , d 23 ) A ”mercedes” configuration 19

  20. ”Stringy” plot for two partons 100 80 60 P E 2 Λ 40 20 0 0 50 100 150 200 P �� x 12 � � � x 21 �� Figure 10: Eigenenergies of the, p=2, excited states as a function of the relative separation between two partons, K = 30 , 50 , 100 , 200 . 20

  21. Extrapolation 1: in K → ∞ 0.5 0.4 0.3 E 2 Λ x 0.2 0.1 0.0 0 50 100 150 200 250 300 P x � P �� x 12 � � � x 21 �� Figure 11: 21

  22. Extrapolation 2: in a = 2 π P → 0 0.50 0.48 E 2 0.46 Λ x 0.44 0.42 0.000 0.005 0.010 0.015 0.020 a 2 �Π x Figure 12: 22

  23. Families of states with three partons 10 10 10 5 5 5 0 0 0 � 5 � 5 � 5 � 10 � 10 � 10 � 10 � 5 0 5 10 � 10 � 5 0 5 10 � 10 � 5 0 5 10 10 10 10 5 5 5 0 0 0 � 5 � 5 � 5 � 10 � 10 � 10 � 10 � 5 0 5 10 � 10 � 5 0 5 10 � 10 � 5 0 5 10 Figure 13: Contour plots of ρ n ( d 13 , d 23 ) , as partons are moved further away. Series A : n = 10 , 19 , 28 , 41 , 54 , 72 , 4 ≤ l = | d 12 | + | d 23 | + | d 31 | ≤ 14 . The minimal distance between partons = 1. 23

  24. 5 5 5 0 0 0 � 5 � 5 � 5 � 5 0 5 � 5 0 5 � 5 0 5 5 5 0 0 � 5 � 5 � 5 0 5 � 5 0 5 Figure 14: Series B. As above but on the Dalitz plot. Now diquarks are allowed, d min = 0 24

  25. all series 30 25 20 P E 3 15 Λ 10 5 0 0 20 40 60 80 P �� x 12 � � � x 23 � � � x 31 �� Figure 15: ρ 406 ( d 13 , d 23 ) 25

  26. ”Stringy” plot for three partons one series � K � 40,60,80,100 100 80 60 P E 3 Λ 40 20 0 0 50 100 150 200 250 300 P x Figure 16: Eigenenergies of the, p=3, excited states as a function of the combined length of strings stretching between three partons. = ⇒ String tensions extracted from E 2 ( l ) and E 3 ( l ) seem to be consistent. 26

  27. Four partons Figure 17: Structure of eigenstates with four partons. Contour plots in three relative distances ( d 14 , d 24 , d 34 ) for states no. 1,9,35,60,100,165 spanning the whole range of states for K = 12 , r max = 165 . 27

  28. K � 20 20 15 P E 4 10 Λ 5 0 0 20 40 60 80 100 P �� x 12 � � � x 23 � � � x 34 � � � x 41 �� Figure 18: Eigenenergies of the four parton states vs. the combined string length (all series). 28

  29. 6 Inclusive distributions 6.1 Number of pairs at distance ∆ p − 1 d p − 1 � i =1 δ (∆ − d ip ) | ψ r ( � � ∆ p − 1 ) | 2 , D r (∆) = ∆ p − 1 (12) � 29

  30. 2.0 1.0 1.0 0.8 0.8 1.5 0.6 0.6 1.0 0.4 0.4 0.5 0.2 0.2 0.0 0.0 0.0 � 10 � 5 0 5 10 � 10 � 5 0 5 10 � 10 � 5 0 5 10 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 � 10 � 5 0 5 10 � 10 � 5 0 5 10 � 10 � 5 0 5 10 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 � 10 � 5 0 5 10 � 10 � 5 0 5 10 � 10 � 5 0 5 10 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 � 10 � 5 0 5 10 � 10 � 5 0 5 10 � 10 � 5 0 5 10 Figure 19: Inclusive parton densities for four partons and for lower states r = 1 , 4 , 5 , 6 , 9 , 12 , 13 , 14 , 15 , 20 , 26 , 29 , K = 27 , r max = 2600 . 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend