computer graphics iii light reflection brdf
play

Computer graphics III Light reflection, BRDF Jaroslav Kivnek, MFF - PowerPoint PPT Presentation

Computer graphics III Light reflection, BRDF Jaroslav Kivnek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Recap Basic radiometric quantities Image: Wojciech Jarosz CG III (NPGR010) - J. Kivnek Interaction of light with a surface


  1. Computer graphics III – Light reflection, BRDF Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz

  2. Recap – Basic radiometric quantities Image: Wojciech Jarosz CG III (NPGR010) - J. Křivánek

  3. Interaction of light with a surface ◼ Absorption ◼ Reflection ◼ Transmission / refraction ◼ Reflective properties of materials determine ❑ the relation of reflected radiance L r to incoming radiance L i , and therefore ❑ the appearance of the object: color, glossiness, etc. CG III (NPGR010) - J. Křivánek

  4. Interaction of light with a surface ◼ Same illumination ◼ Different materials Source: MERL BRDF database CG III (NPGR010) - J. Křivánek

  5. Recall the Phong shading model N R L V ( ) =  +  n C I k ( N L ) k ( V R ) d s =  − R 2 ( N L ) N L CG III (NPGR010) - J. Křivánek

  6. I) Adopt radiometric notation n r  i  i  r  o ( )  =   +  n L ( ) L ( ) k cos k cos o o i i d i s r  =   =   −  cos 2 ( ) r r n n r o i i Exact same thing as on the previous slide – just using physically-based notation. CG III (NPGR010) - J. Křivánek

  7. BRDF corresponding to the original Phong shading model n r  i  i  r  o  n L cos = = + o Phong Orig f r f k k BRDF:  r  r d s L cos cos i i i General definition of a BRDF Application of this definition to the Phong shading formula. CG III (NPGR010) - J. Křivánek

  8. BRDF – Formal definition ◼ B idirectional R eflectance D istribution F unction n L i (  i ) „ o utgoing “ L r (  o ) d  i  i  o „ i ncoming“ „ r eflected “  d L ( ) −  →  = 1 r o f r ( ) [ sr ]      i o L ( ) cos d i i i i CG III (NPGR010) - J. Křivánek

  9. BRDF ◼ Mathematical model of the reflection properties of a surface ◼ Intuition ❑ Value of a BRDF = probability density , describing the event that a light energy “packet”, or “photon” , coming from direction  i gets reflected to the direction  o .  )  →    ◼ Range: f ( ) 0 , r i o CG III (NPGR010) - J. Křivánek

  10. BRDF Westin et al. Predicting Reflectance Functions from Complex Surfaces, SIGGRAPH 1992. ◼ The BRDF is a model of the bulk behavior of light on the microstructure when viewed from distance CG III (NPGR010) - J. Křivánek

  11. Surface roughness and blurred reflections ◼ The rougher the blurrier Microscopic surface roughness CG III (NPGR010) - J. Křivánek

  12. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) CG III (NPGR010) - J. Křivánek Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  13. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) CG III (NPGR010) - J. Křivánek Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  14. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) CG III (NPGR010) - J. Křivánek Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  15. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) CG III (NPGR010) - J. Křivánek Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  16. BRDF properties ◼ Helmholz reciprocity (always holds in nature, a physically-plausible BRDF model must follow it)  →  =  →  f ( ) f ( ) r i o r o i CG III (NPGR010) - J. Křivánek

  17. BRDF properties ◼ Energy conservation ❑ A patch of surface cannot reflect more light energy than it receives CG III (NPGR010) - J. Křivánek

  18. BRDF (an)isotropy ◼ Isotropic BRDF = invariant to a rotation around surface normal ( ) ( )     =   +    +  f , ; , f , ; , r i i o o r i i o o ( ) =    −  f , , r i o o i CG III (NPGR010) - J. Křivánek

  19. Surfaces with anisotropic BRDF CG III (NPGR010) - J. Křivánek

  20. Anisotropic BRDF ◼ Different microscopic roughness in different directions (brushed metals, fabrics , …) CG III (NPGR010) - J. Křivánek

  21. Isotropic vs. anisotropic BRDF ◼ Isotropic BRDFs have only 3 degrees of freedom ❑ Instead of  i and  o it is enough to consider only D =  i –  o ❑ But this is not enough to describe an anisotropic BRDF ◼ Description of an anisotropic BRDF ❑  i and  o are expressed in a local coordinate frame ( U , V , N ) U … tangent – e.g. the direction of brushing ◼ V … binormal ◼ N … surface normal … the Z axis of the local coordinate frame ◼ CG III (NPGR010) - J. Křivánek

  22. Reflection equation ◼ A.k.a. reflectance equation, illumination integral, OVTIGRE (“ outgoing, vacuum, time-invariant, gray radiance equation ”) ◼ “How much total light gets reflected in the direction  o ?“ ◼ From the definition of the BRDF, we have  =  →       d L ( ) f ( ) L ( ) cos d r o r i o i i i i CG III (NPGR010) - J. Křivánek

  23. Reflection equation ◼ Total reflected radiance: integrate contributions of incident radiance, weighted by the BRDF, over the hemisphere   =    →     L ( ) L ( ) f ( ) cos d r o i i r i o i i H ( ) x upper hemisphere over x = න CG III (NPGR010) - J. Křivánek 2015

  24. Reflection equation ◼ Evaluating the reflectance equation renders images!!! ❑ Direct illumination Environment maps ◼ Area light sources ◼ etc. ◼ CG III (NPGR010) - J. Křivánek

  25. Energy conservation – More rigorous ◼ Reflected flux per unit area (i.e. radiosity B ) cannot be larger than the incoming flux per unit surface area (i.e. irradiance E ).     L ( ) cos d B = r o o o =     E L ( ) cos d i i i i      →       f ( ) L ( ) cos d cos d = r i o i i i i o o =     L ( ) cos d i i i i  1 CG III (NPGR010) - J. Křivánek

  26. Reflectance ◼ Ratio of the incoming and outgoing flux ❑ A.k.a . „albedo“ ( used mostly for diffuse reflection) ◼ Hemispherical-hemispherical reflectance ❑ See the “Energy conservation” slide ◼ Hemispherical-directional reflectance ❑ The amount of light that gets reflected in direction  o when illuminated by the unit, uniform incoming radiance.    =  =  →    ( ) a ( ) f ( ) cos d o o r i o i i H ( x ) CG III (NPGR010) - J. Křivánek

  27. Hemispherical-directional reflectance ◼ Nonnegative     o  ( ) 0 , 1 ◼ Less than or equal to 1 (energy conservation) ◼ Equal to directional-hemispherical reflectance ❑ What is the percentage of the energy coming from the incoming direction  i that gets reflected (to any direction )?“ ❑ Equality follows from the Helmholz reciprocity CG III (NPGR010) - J. Křivánek

  28. CG III (NPGR010) - J. Křivánek

  29. CG III (NPGR010) - J. Křivánek

  30. BRDF components General BRDF Ideal diffuse Ideal specular Glossy, (Lambertian) directional diffuse CG III (NPGR010) - J. Křivánek

  31. Ideal diffuse reflection

  32. Ideal diffuse reflection CG III (NPGR010) - J. Křivánek

  33. Ideal diffuse reflection ◼ A.k.a. Lambertian reflection Johann Heinrich Lambert, „ Photometria “ , 1760. ❑ ◼ Postulate: Light gets reflected to all directions with the same probability, irrespective of the direction it came from ◼ The corresponding BRDF is a constant function (independent of  i ,  o )  →  = f ( ) f r , d i o r , d CG III (NPGR010) - J. Křivánek

  34. Ideal diffuse reflection ◼ Reflection on a Lambertian surface:   =    L ( ) f L ( ) cos d o o r , d i i i i H ( x ) = f E r , d irradiance ◼ View independent appearance ❑ Outgoing radiance L o is independent of  o ◼ Reflectance (derive)  =   f , d r d CG III (NPGR010) - J. Křivánek

  35. Ideal diffuse reflection ◼ Mathematical idealization that does not exist in nature ◼ The actual behavior of natural materials deviates from the Lambertian assumption especially for grazing incidence angles CG III (NPGR010) - J. Křivánek

  36. White-out conditions ◼ Under a covered sky we cannot tell the shape of a terrain covered by snow ◼ We do not have this problem close to a localized light source. ◼ Why? CG III (NPGR010) - J. Křivánek

  37. White-out conditions ◼ We assume sky radiance independent of direction (covered sky)  = sky L ( , ) L x i i ◼ We also assume Lambertian reflection on snow ◼ Reflected radiance given by: =   snow snow sky L L o d i White-out!!! CG III (NPGR010) - J. Křivánek

  38. Ideal mirror reflection

  39. Ideal mirror reflection CG III (NPGR010) - J. Křivánek

  40. CG III (NPGR010) - J. Křivánek

  41. CG III (NPGR010) - J. Křivánek Nishino, Nayar: Eyes for Relighting, SIGGRAPH 2004

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend