com puter graphics iii light reflection brdf
play

Com puter graphics III Light reflection, BRDF Jaroslav Kivnek, MFF - PowerPoint PPT Presentation

Com puter graphics III Light reflection, BRDF Jaroslav Kivnek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Basic radiom etric quantities Image: Wojciech Jarosz CG III (NPGR010) - J. Kivnek 2015 Interaction of light with a surface


  1. Com puter graphics III – Light reflection, BRDF Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz

  2. Basic radiom etric quantities Image: Wojciech Jarosz CG III (NPGR010) - J. Křivánek 2015

  3. Interaction of light with a surface  Absorption  Reflection  Transmission / refraction  Reflective properties of materials determine to incom ing  the relation of reflected radiance L r radiance L i , and therefore  the appearance of the object: color, glossiness, etc. CG III (NPGR010) - J. Křivánek 2015

  4. Interaction of light with a surface  Same illumination  Different materials Source: MERL BRDF database CG III (NPGR010) - J. Křivánek 2015

  5. BRDF  Bidirectional reflectance distribution function  (cz: Dvousměrová distribuční funkce odrazu ) L i ( ω i ) n “ o utgoing” L r ( ω o ) d ω i θ i θ o “ i ncoming” “ r eflected” ω ω d L ( ) d L ( ) − ω → ω = = 1 r o r o f r ( ) [ sr ] ω ω ⋅ θ ⋅ ω i o d E ( ) L ( ) cos d i i i i i CG III (NPGR010) - J. Křivánek 2015

  6. BRDF  Mathematical model of the reflection properties of a surface  Intuition  Value of a BRDF = probability density , describing the event that a light energy “packet”, or “photon”, coming from direction ω i gets reflected to the direction ω o . [ ) ω → ω ∈ ∞ f ( ) 0 ,  Range: r i o CG III (NPGR010) - J. Křivánek 2015

  7. BRDF Westin et al. Predicting Reflectance Functions from Complex Surfaces, SIGGRAPH 1992.  The BRDF is a m odel of the bulk behavior of light on the microstructure when viewed from distance CG III (NPGR010) - J. Křivánek 2015

  8. BRDF properties  Helm holz reciprocity (always holds in nature, a physically-plausible BRDF model must follow it) ω → ω = ω → ω f ( ) f ( ) r i o r o i CG III (NPGR010) - J. Křivánek 2015

  9. BRDF properties  Energy conservation  Reflected flux per unit area (i.e. radiosity B ) cannot be larger than the incoming flux per unit surface area (i.e. irradiance E ). ∫ ω θ ω L ( ) cos d B = r o o r = ∫ ω θ ω E L ( ) cos d i i i i [ ] ∫ ∫ ω → ω ω θ ω θ ω f ( ) L ( ) cos d cos d = r i o i i i i o o = ∫ ω θ ω L ( ) cos d i i i i ≤ 1 CG III (NPGR010) - J. Křivánek 2015

  10. BRDF (an)isotropy  Isotropic BRDF = invariant to a rotation around surface normal ( ) ( ) θ φ θ φ = θ φ + φ θ φ + φ f , ; , f , ; , r i i o o r i i o o ( ) = θ θ φ − φ f , , r i o o i CG III (NPGR010) - J. Křivánek 2015

  11. Surfaces with anisotropic BRDF CG III (NPGR010) - J. Křivánek 2015

  12. Anisotropic BRDF  Different microscopic roughness in different directions (brushed metals, fabrics, … ) CG III (NPGR010) - J. Křivánek 2015

  13. Isotropic vs. anisotropic BRDF  Isotropic BRDFs have only 3 degrees of freedom  Instead of φ i and φ o it is enough to consider only ∆φ = φ i – φ o  But this is not enough to describe an anisotropic BRDF  Description of an anisotropic BRDF  φ i and φ o are expressed in a local coordinate fram e ( U , V , N ) U … tangent – e.g. the direction of brushing  V … binormal  N … surface normal … the Z axis of the local coordinate frame  CG III (NPGR010) - J. Křivánek 2015

  14. Reflection equation  A.k.a. reflectance equation, illumination integral, OVTIGRE (“outgoing, vacuum, time-invariant, gray radiance equation”)  “How much total light gets reflected in the direction ω o ?“  From the definition of the BRDF, we have ω = ω → ω ⋅ ω ⋅ θ ω d L ( ) f ( ) L ( ) cos d r o r i o i i i i CG III (NPGR010) - J. Křivánek 2015

  15. Reflection equation  Integrating the contributions d L r over the entire hemisphere: ∫ ω = ω ⋅ ω → ω ⋅ θ ω L ( x , ) L ( x , ) f ( x , ) cos d r o i i r i o i i H ( x ) upper hemisphere n L i ( x , ω i ) over x L o ( x , ω o ) d ω i θ i θ o L r ( x , ω o ) CG III (NPGR010) - J. Křivánek 2015

  16. Reflection equation  Evaluating the reflectance equation renders images!!!  Direct illumination Environment maps  Area light sources  etc.  CG III (NPGR010) - J. Křivánek 2015

  17. Reflectance  Ratio of the incom ing and outgoing flux  A.k.a. „albedo“ (used mostly for diffuse reflection)  Hem ispherical-hem ispherical reflectance  See the “Energy conservation” slide  Hem ispherical-directional reflectance  The amount of light that gets reflected in direction ω o when illuminated by the unit, uniform incoming radiance. ∫ ρ ω = ω = ω → ω θ ω x ( ) a ( ) f ( , ) cos d o o r i o i i H ( x ) CG III (NPGR010) - J. Křivánek 2015

  18. Hem ispherical-directional reflectance  Nonnegative [ ] ρ ω o ∈ ( ) 0 , 1  Less than or equal to 1 (energy conservation)  Equal to directional-hem ispherical reflectance  What is the percentage of the energy coming from the incoming direction ω i that gets reflected (to any direction)?“  Equality follows from the Helmholz reciprocity CG III (NPGR010) - J. Křivánek 2015

  19. CG III (NPGR010) - J. Křivánek 2015

  20. CG III (NPGR010) - J. Křivánek 2015

  21. BRDF com ponents General BRDF Ideal diffuse Ideal specular Glossy, (Lambertian) directional diffuse CG III (NPGR010) - J. Křivánek 2015

  22. Ideal diffuse reflection

  23. Ideal diffuse reflection CG III (NPGR010) - J. Křivánek 2015

  24. Ideal diffuse reflection  A.k.a. Lambertian reflection Johann Heinrich Lambert, „Photometria“, 1760.   Postulate: Light gets reflected to all directions with the same probability, irrespective of the direction it came from  The corresponding BRDF is a constant function (independent of ω i , ω o ) ω → ω = f ( ) f r , d i o r , d CG III (NPGR010) - J. Křivánek 2015

  25. Ideal diffuse reflection  Reflection on a Lambertian surface: ∫ ω = ω θ ω L ( ) f L ( ) cos d o o r , d i i i i x H ( ) = f E r , d irradiance  View independent appearance  Outgoing radiance L o is independent of ω o  Reflectance (derive) ρ = π ⋅ f , d r d CG III (NPGR010) - J. Křivánek 2015

  26. Ideal diffuse reflection  Mathematical idealization that does not exist in nature  The actual behavior of natural materials deviates from the Lambertian assumption especially for grazing incidence angles CG III (NPGR010) - J. Křivánek 2015

  27. White-out conditions  Under a covered sky we cannot tell the shape of a terrain covered by snow  We do not have this problem close to a localized light source.  Why? CG III (NPGR010) - J. Křivánek 2015

  28. White-out conditions  We assume sky radiance independent of direction (covered sky) ω = sky L ( x , ) L i i  We also assume Lambertian reflection on snow  Reflected radiance given by: = ρ ⋅ snow snow sky L L o d i White-out!!! CG III (NPGR010) - J. Křivánek 2015

  29. Ideal m irror reflection

  30. Ideal m irror reflection CG III (NPGR010) - J. Křivánek 2015

  31. CG III (NPGR010) - J. Křivánek 2015

  32. CG III (NPGR010) - J. Křivánek 2015 Nishino, Nayar: Eyes for Relighting, SIGGRAPH 2004

  33. The law of reflection n φ o θ i θ o φ i θ o = θ i φ o = (φ i + π) mod 2 π  Direction of the reflected ray (derive the formula) ω = ω ⋅ − ω n ) n 2 ( o i i CG III (NPGR010) - J. Křivánek 2015

  34. Digression: Dirac delta distribution  Definition (informal): Image : Wikipedia  The following holds for any f :  Delta distribution is not a function (otherwise the integrals would = 0) CG III (NPGR010) - J. Křivánek 2015

  35. BRDF of the ideal m irror  BRDF of the ideal mirror is a Dirac delta distribution We want: n θ o = θ i θ ϕ = θ θ ϕ ± π θ i L ( , ) R ( ) L ( , ) θ o r o o i i o o Fresnel reflectance (see below) δ θ − θ δ ϕ − ϕ ± π (cos cos ) ( ) θ ϕ θ ϕ = R θ i o i o f ( , ; , ) ( ) θ r , m i i o o i cos i CG III (NPGR010) - J. Křivánek 2015

  36. BRDF of the ideal m irror  BRDF of the ideal mirror is a Dirac delta distribution  Varification: ∫ θ ϕ = θ ω L ( , ) f (.) L (.) cos d r o o r , m i i i δ θ − θ δ ϕ − ϕ ± π (cos cos ) ( ) ∫ = θ θ ϕ θ ω i o i o R ( ) L ( , ) cos d θ i i i i i i cos i = θ θ ϕ ± π R ( ) L ( , ) i i r r CG III (NPGR010) - J. Křivánek 2015

  37. CG III (NPGR010) - J. Křivánek 2015

  38. Ideal refraction

  39. Ideal refraction CG III (NPGR010) - J. Křivánek 2015

  40. Ideal refraction  Index of refraction η  Water 1.33, glass 1.6, diamond 2.4  Often depends on the wavelength ω i  Snell’s law η θ = η θ sin sin η i i i o o η o ω o CG III (NPGR010) - J. Křivánek 2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend