computational design for consumer level fabrication
play

Computational Design for Consumer-Level Fabrication Przemyslaw - PowerPoint PPT Presentation

Computational Design for Consumer-Level Fabrication Przemyslaw Musialski TU Wien Motivation 3D Modeling 3D Printing Przemyslaw Musialski 2 Motivation Przemyslaw Musialski 3 Przemyslaw Musialski 4 Example Przemyslaw Musialski 5


  1. Computational Design for Consumer-Level Fabrication Przemyslaw Musialski TU Wien

  2. Motivation 3D Modeling… 3D Printing… Przemyslaw Musialski 2

  3. Motivation Przemyslaw Musialski 3

  4. Przemyslaw Musialski 4

  5. Example Przemyslaw Musialski 5

  6. Goals 1. Optimize the shape to fulfill the desired goals Przemyslaw Musialski 6

  7. Goals 1. Optimize the shape to fulfill the desired goals 2. Keep the input shape deformation minimal Przemyslaw Musialski 7

  8. Shape Optimization

  9. Input and Output Przemyslaw Musialski 9

  10. Input and Output • Input surface 𝑻 𝑻 Przemyslaw Musialski 10

  11. Input and Output • input surface 𝑻 𝑻 Przemyslaw Musialski 11

  12. Input and Output • input surface 𝑻 • output: two surfaces • outer offset surface 𝑻 𝑻 • inner offset surface 𝑻 𝑻 • solid body between 𝑻 and 𝑻 𝑻 Przemyslaw Musialski 12

  13. Offset Surfaces • surface deformation by offset: 𝑻 𝑻 𝒚 𝒋 = 𝒚 𝒋 + 𝜀 𝑗 𝒘 𝒋 𝑻 𝑻 𝑻 𝑻 Przemyslaw Musialski 13

  14. Offset Surfaces • surface deformation by offset: 𝒚 𝒋 𝑻 𝒚 𝒋 = 𝒚 𝒋 + 𝜀 𝑗 𝒘 𝒋 𝒘 𝒋 𝜀 𝑗 𝒚 𝒋 • for each vertex 𝒚 𝒋 𝑻 • along 𝒘 𝒋 • add an individual offset 𝜀 𝑗 𝑻 Przemyslaw Musialski 14

  15. Offset Surfaces • surface deformation by offset: 𝒚 𝒋 𝑻 𝒚 𝒋 = 𝒚 𝒋 + 𝜀 𝑗 𝒘 𝒋 𝒘 𝒋 𝜀 𝑗 𝒚 𝒋 • for each vertex 𝒚 𝒋 𝑻 • along 𝒘 𝒋 • add an individual offset 𝜀 𝑗 𝑻 Przemyslaw Musialski 15

  16. Offset Surfaces • surface deformation by offset: 𝑻 𝒚 𝒋 = 𝒚 𝒋 + 𝜀 𝑗 𝒘 𝒋 • for each vertex 𝒚 𝒋 𝑻 𝑻 • along 𝒘 𝒋 • add an individual offset 𝜀 𝑗 Przemyslaw Musialski 16

  17. Offset Surfaces • How far can we offset? • Along which directions 𝑾 ? 𝑻 𝑻 𝑻 𝑾 Przemyslaw Musialski 17

  18. Offset Bounds 𝑻 Przemyslaw Musialski 18

  19. Offset Bounds global 𝑻 local Przemyslaw Musialski 19

  20. Offset Bounds • inside: skeleton 𝑻 𝑻 • Mean Curvature Flow [Tagliasacchi et al. 2012] 𝑻 Przemyslaw Musialski 20

  21. Offset Vectors • inside: skeleton 𝑻 𝑻 • Mean Curvature Flow [Tagliasacchi et al. 2012] • offset along vectors 𝒘 𝒋 ∈ 𝑾 𝑻 𝑾 Przemyslaw Musialski 21

  22. Offset Vectors and Bounds • inside: skeleton 𝑻 𝑻 • Mean Curvature Flow [Tagliasacchi et al. 2012] • offset along vectors 𝒘 𝒋 ∈ 𝑾 𝑻 • outside a constant max. value 𝑾 Przemyslaw Musialski 22

  23. Shape Optimization Problem • minimize objective 𝑔 as a function of 𝜺 : min 𝜺 𝑔 𝜺 s. t. 𝑕(𝜺) 𝑻 • subject to constraints 𝑕(𝜺) 𝑻 • for example: 𝑻 • 𝑔 ≔ make shape float subject to • 𝑕 ≔ keep upright orientation Przemyslaw Musialski 23

  24. Shape Optimization Problem • minimize objective 𝑔 as a function of 𝜺 : 𝜺 𝑔 (𝜺)  𝑜 unknowns min 𝑻 • issues: 𝑻 • problem is huge for large meshes 𝑻  scales very badly • problem is underdetermined  there exist many solutions (regularization needed) Przemyslaw Musialski 24

  25. Shape Optimization Problem • minimize objective 𝑔 as a function of 𝜺 : min 𝜺 𝑔 (𝜺) 𝑻 • issues: 𝑻 • problem is huge for large meshes 𝑻  scales very badly • problem is underdetermined  there exist many solutions (regularization needed) Przemyslaw Musialski 25

  26. Order Reduction

  27. Order Reduction • order reduction: • lower the dimensionality while preserving input-output behavior • idea: • project problem onto a lower dimensional space •  Manifold Harmonics Przemyslaw Musialski 27

  28. Manifold Harmonics • diagonalization of the Laplacian matrix L  Spectral Theorem: 𝐌 = 𝚫𝚳𝚫 𝐔 • generalization of the Fourier Transform for scalar functions on surfaces [V ALLET , B. AND L ÉVY , B. 2008. Spectral Geometry Processing with Manifold Harmonics. Computer Graphics Forum 27 , 2, 251 – 260.] Przemyslaw Musialski 28

  29. Manifold Harmonics • diagonalization of the Laplacian matrix L  Spectral Theorem: 𝐌 = 𝚫𝚳𝚫 𝐔 • generalization of the Fourier Transform for scalar functions on surfaces [V ALLET , B. AND L ÉVY , B. 2008. Spectral Geometry Processing with Manifold Harmonics. Computer Graphics Forum 27 , 2, 251 – 260.] Przemyslaw Musialski 29

  30. Order Reduction • project unknown offsets 𝜺 = 𝜀 1 , 𝜀 2 ,…, 𝜀 𝑜 𝑈 onto 𝚫 𝑙 : 𝛽 1 𝜹 1 𝛽 2 𝜹 2 𝛽 3 𝜹 3 = 𝜺 = 𝚫 𝑙 𝜷 𝛽 4 𝜹 4 𝛽 5 𝜹 5 𝛽 6 𝜹 6 𝛽 7 𝜹 7 𝛽 𝑙 𝜹 𝑙 • vector 𝜷 = 𝛽 1 , 𝛽 2 ,…, 𝛽 𝑙 𝑈 now contains the unknowns! Przemyslaw Musialski 30

  31. Order Reduction • project unknown offsets 𝜺 = 𝜀 1 , 𝜀 2 ,…, 𝜀 𝑜 𝑈 onto 𝚫 𝑙 : 𝛽 1 𝜹 1 𝛽 2 𝜹 2 𝛽 3 𝜹 3 𝒚 𝒋 = 𝒚 𝒋 + 𝜀 𝑗 𝒘 𝒋 𝛽 4 𝜹 4 𝛽 5 𝜹 5 𝛽 6 𝜹 6 𝑙 𝒚 𝒋 = 𝒚 𝒋 + 𝛽 𝑘 𝛿 𝑗𝑘 𝒘 𝒋 𝛽 7 𝜹 7 𝛽 𝑙 𝜹 𝑙 𝑘=1 Przemyslaw Musialski 31

  32. Reduced Shape Optimization Problem • minimize objective 𝑔 as a function of 𝜷 : min 𝜷 𝑔 (𝜷) 𝛽 1 𝜹 1 𝛽 2 𝜹 2 𝛽 3 𝜹 3 𝛽 4 𝜹 4 𝛽 5 𝜹 5 𝛽 6 𝜹 6 • (subject to constraints) 𝛽 7 𝜹 7 𝛽 𝑙 𝜹 𝑙 Przemyslaw Musialski 32

  33. Reduced Shape Optimization Problem • minimize objective 𝑔 as a function of 𝜷 : 𝜷 𝑔 (𝜷)  𝑙 unknowns , 𝑙 ≪ 𝑜 min 𝛽 1 𝜹 1 𝛽 2 𝜹 2 𝛽 3 𝜹 3 𝛽 4 𝜹 4 𝛽 5 𝜹 5 𝛽 6 𝜹 6 𝜺 = 𝚫 𝑙 𝜷 We deform only the low-frequencies and 𝛽 7 𝜹 7 𝛽 𝑙 𝜹 𝑙 leave high-frequency details untouched! Przemyslaw Musialski 33

  34. Reduced Shape Optimization Problem • minimize objective 𝑔 as a function of 𝜷 : 𝜷 𝑔 (𝜷)  𝑙 unknowns , 𝑙 ≪ 𝑜 min 𝜺 = 𝚫 𝑙 𝜷  independent of mesh resolution  implicit regularization  numerically stable  easy to implement Przemyslaw Musialski 34

  35. Applications I: Mass Properties

  36. Example Przemyslaw Musialski 36

  37. Buoyancy Force: 𝑮 𝑐 Equilibrium 𝑮 𝑕 = 𝑮 𝑐 Center of Buoyancy Center of Mass Gravity: 𝑮 𝑕 Mass Properties 𝑸(𝑻) Przemyslaw Musialski 37

  38. Applications Center of Buoyancy • Gauss’ Divergence Theorem • allows us to compute mass properties as a function of the surface 𝑸 𝒏 𝑻 = 𝑁 𝑸 𝒚,𝒛,𝒜 (𝑻) = 𝑫𝒑𝑵 = 𝑑 𝑦 𝑑 𝑧 𝑑 𝑨 𝑼 𝐽 𝑦 2 𝐽 𝑦𝑧 𝐽 𝑦𝑨 𝐽 𝑦𝑧 𝐽 𝑧 2 𝐽 𝑧𝑨 𝑸 𝒚 𝟑 ,𝒚𝒛,…,𝒜 𝟑 (𝑻) = 𝑱 = Center of Mass 𝐽 𝑦𝑨 𝐽 𝑧𝑨 𝐽 𝑨 2 Przemyslaw Musialski 38

  39. Applications Center of Buoyancy • optimization problem min 𝑔 𝑸 𝑻 𝜺(𝜷) 𝜷 • an analytical gradient 𝛼𝑔 = 𝜖𝑔 𝜖𝑸 𝜖𝑻 𝜖𝜺 𝜖𝑸 𝜖𝑻 𝜖𝜺 𝜖𝜷 Center of Mass Przemyslaw Musialski 39

  40. Applications • static stability • monostatic stability • rotational stability • static stability under storage • volume and buoyancy Przemyslaw Musialski 40

  41. Spinning Turtle Przemyslaw Musialski 41

  42. Rabbit Rolly-Polly Przemyslaw Musialski 42

  43. Balanced Bottles Przemyslaw Musialski 43

  44. Applications II: Modal Synthesis

  45. Natural Frequencies Frequency: 440 Hz Concert pitch A Przemyslaw Musialski 45

  46. Natural Frequencies 1 st mode 440 Hz (pitch) 2 nd mode 1060 Hz (1 st overtone) 3 rd mode 2790 Hz (2 nd overtone) … Overtone spectrum ⟺ characteristic sound of object Przemyslaw Musialski 46

  47. Natural Frequencies Natural modes depend on • material • shape Przemyslaw Musialski 47

  48. Goal: “Modal Synthesis” shape optimization fabrication Przemyslaw Musialski 48

  49. Vertex-Normal Parametrization • Large offsets and high curvatures ⟹ self-intersections Przemyslaw Musialski 49

  50. Shape Parametrization • Use Reduced Basis with Manifold Harmonics • Define offsets 𝜺 as linear combination of basis functions 𝚫 𝒍 𝜺 = 𝚫 𝑙 𝜷 𝒍 = 𝒀 + 𝒋=𝟐 Przemyslaw Musialski 50

  51. Shape Optimization • Use non-linear optimization routine (Matlab) 𝜷 𝑔 𝜷 = 𝑞 − 𝑞 0 2 min • 𝑞 0 … target pitch • 𝑞 ... pitch of incument solution • 𝜷 … coefficient vector Przemyslaw Musialski 51

  52. Fabrication • Material • good acoustic properties • cast into complex shape • Tin • melting point of 230°C • Young’s modulus of 50 GPa Przemyslaw Musialski 52

  53. Fabrication • Oval bell • molds from sand • Rabbit bell • molds from caoutchouc Przemyslaw Musialski 53

  54. Bell Przemyslaw Musialski 54

  55. Bell Przemyslaw Musialski 55

  56. Rabbit Przemyslaw Musialski 56

  57. Rabbit Przemyslaw Musialski 57

  58. Results • Aluminium plates • Median error of 1.7% • 0.7% with parameter estimation • Bell • Error of 2.8% • Rabbit Bell • Error of 11% • 6% with parameter estimation Przemyslaw Musialski 58

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend