comprehensive utilization of comprehensive utilization of
play

Comprehensive Utilization of Comprehensive Utilization of - PowerPoint PPT Presentation

M a y 2 5 , 2 0 0 9 , H e l s i n k i , Comprehensive Utilization of Comprehensive Utilization of Comprehensive Utilization of Woody Biomass components Woody Biomass components Woody Biomass components Yasumitsu Uraki


  1. M a y 2 5 , 2 0 0 9 , H e l s i n k i , Comprehensive Utilization of Comprehensive Utilization of Comprehensive Utilization of Woody Biomass components Woody Biomass components Woody Biomass components Yasumitsu Uraki Uraki, Dr. , Dr. Sci Sci. . Yasumitsu Professor of Forest Chemistry, Professor of Forest Chemistry, Research Faculty of Agriculture, Research Faculty of Agriculture, Hokkaido University, Japan Hokkaido University, Japan E- -mail: mail: uraki uraki@for. @for.agr agr. .hokudai hokudai.ac. .ac.jp jp E

  2. Woody biomass is the most abundant natural resource on the earth. carbon neutral. comprised of hydrophilic polysaccharides, cellulose and hemicellulose (glucomannan, glucuronoxylan, and arabinogalactan). and hydrophobic lignin (polyphenylpropanoid). An alternative resource to fossil resources

  3. Objectives : Comprehensive utilization of woody biomass Atmospheric Acetic acid Pulping Wood Pretreatment Reflux for 1h in 90-95% AcOH aq. Pulping Minor components Major components Addition of 0.32% sufuric acid (<10% ) or 0.1% hydrochloric acid (cell wall components) Reflux for 3-4 h Extractives Insolubles Antibiotics, Antioxidants, Water-solubles Insolubles Water-insolubles etc. (ca. 50%) (20 - 30% ) (30-20%) Acetic acid Pulp Lignin (AP) Hemicellulose Carbon fibers, Sugar syrups Cellulose Adhesives, Furfural, Polyurethane Papers, Diet sweetening resins, Cellulose materials, Ion exchangers, derivatives,

  4. Filtration Birch chips Washing Dry Centrifu- gation Unbleached Unbleached Pulp (AP) Pulp (AP) Birch outer bark Black liquor Concentration Precipitation Freezing Freeze- Filtration Filtration dry Lignin (AL) Lignin (AL) Crystalli- Reduction zation Sugars Xylitol Xylitol 20-L Evaporator Fig. Separation scheme of woody biomass (birch) using a large reactor

  5. Table Material balance on the atmospheric acetic acid pulping. Cooking conditions Material balance (% on chips) Species AcOH Catalyst Pulp (KL) Reject Lignin WS 90% 0.32-SA 51.8 (5.3) 0.1 22.2 30.2 95% 0.1-HCl 51.9 (4.7) 0.0 19.0 27.1 Birch 1) 90% 0.32-SA 46.3 (5.6) 0.8 24.9 27.7 Beech 90% 0.32-SA 47.5 (7.2) 0.4 Poplar 90% 0.32-SA 49.9 (3.5) 0.0 22.9 22.3 Todo-fir 95% 0.1-HCl 51.7 (7.3) 0.2 24.5 25.9 SA, sulfuric acid; Pulp, screened pulp; KL, Klason lignin (% on pulp). 1) The pulping was performed in a 100-L reactor (Chips, o.d. 9 kg; Liquor, about 60 kg)

  6. Lignin utilization I. -Finding fusibility and Preparation of carbon fibers -

  7. 25 200 150 . 100 50 30

  8. Thermocouple Spinning condition Temperature: 330 - 380 ℃ Maximum winding rate: 140 m min -1 Heater Extrusion pressure: 3 - 5 kgf cm -1 Nozzle heater Nitrogen (N 2 ) Nozzle Lignin fiber Winder Fig. Laboratory spinning apparatus for fusion spinning of lignin.

  9. bar = 30 µm bar = 30 µm HAL carbon fiber (LAL-CF) SAL carbon fiber (NAL-CF) BET surface area of HAL-CF= 190 m 2 g -1 BET surface area of SAL-CF = 370 m 2 g -1 Fig. Scanning electron micrographs of AL-CF.

  10. Steam exploded lignin Acetic acid lignin Pitch Woody biomass Petroleum or Woody biomass Coal pitch Steam explosion Atmospheric Polymerization Acetic acid pulping Extraction hot water upon heating with alkaline water Concentration of to heavy oil black liquor Precipitation Exploded lignin Acetic acid lignin Pitch for spinning Hygrogenolysis or Phenolation Filtration Acidification Hydrogenation Solvent fractionation Removal of Polymerization upon heating volatile substance Softwood Melt spinning Melt spinning Melt spinning Thermostabilization Thermostabilization Thermostabilization Carbonization to carbon fibers

  11. 600 SAL CF-1 500 SAL CF-2 Tensile strength (MPa) HAL CF (air) 400 300 200 100 0 5 5 10 20 30 40 50 Diameter (µm) Note; SAL CF-1; prepared without thermostabilized, SAL CF-2; prepared with thermostabilization in air, HAL CF; prepared with thermostabilization in air. Fig. Effect of Diameter on tensile strength of AL based CFs.

  12. Lignin utilization II. - Preparation of activated carbon fibers and Hot-melt type adhesive-

  13. N 2 Pump Flow meter Trap Sample Vaccum Heater pump Ice Water trap trap Fig. Steam activation system for producing activated carbon moldings

  14. Surface area Iodine Methylene blue Specific surface area (m 2 g -1 ) 650 2,500 2,000 Adsorption capacity (mg g -1 ) 1,830 600 1,510 1,930 2,000 1,500 PAN 1,600 410 400 1,400 1,500 1,550 1,000 370 1,180 1,000 320 Tar 200 500 pitch 500 370 190 0 0 20 60 80 40 0 20 40 60 80 20 40 60 80 Activation time (min) Activation time (min) Activation time (min) Fig. Adsorption performance of AL-based ACF ; HAL ; SAL

  15. Preparation scheme of dry- -formed board formed board Preparation scheme of dry + Mixed Paper Lignin Dry mixture (from birch) Medium density High density Thermal press Fiberboard with a mold

  16. 24h water soaking 80 700 Flexural strength (MPa) ( % ) 600 Water absorption 60 500 400 40 S35 300 200 20 100 0 0 0 20 40 60 80 0 20 40 60 80 HAL content (%) HAL content (%) Press temp : 130 ℃ Pressure : 230 kgf/cm 2 Press temp : 130 ℃ Pressure : 230 kgf/cm 2 Fig. Influence of lignin content Fig. Influence of lignin content on flexural strength on water absorption Properties of lignin-wastepaper fiberboard

  17. Lignin utilization III. - Support for Water-soluble immobilized cellulase system and Surfactants-

  18. AL 10g AL 10g 3.3 M NaOH 30 ml 1M NaOH 100 ml Stirring for 24hr Stirring for 24hr Saponified Saponified CH 2 CH-CH 2 -O-(CH 2 -CH 2 -O) 13 -CH 2 -CHCH 2 CH 2 CH-CH 2 -O-(CH 2 -CH 2 -O) 13 -CH 2 -CHCH 2 AL AL O O O O PE13 PE 4 g PE 16 g 1)Stirring at 70 ℃ for 3hr 1)Stirring at room temperature 2)Stirring at room temperature for 5 min 2)Standing still at 80 ℃ for 1hr for 3 days 3)pH4.0 with AcOH 3)pH4.0 with AcOH 4)Ultrafiltration 4)Washing with hot water 5)Lyophilization 5)Lyophilization Amphiphilic product PE-AL gel Amphiphilic product PE-AL gel (PE-AL sol) (PE-AL sol) PE PE PE PE PE PE PE AL AL PE PE PE PE PE AL AL AL AL AL AL AL AL AL AL AL AL AL AL PE PE PE PE PE PE PE PE PE PE PE PE HO HO HO HO HO HO AL AL AL AL AL AL AL AL AL AL AL : PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE 25.9 wt% PE PE PE PE PE PE AL: 40.7 wt% PE PE PE PE PE PE PE : 74.1 wt% PE PE PE PE PE PE PE PE PE PE PE : 59.3 wt% PE PE PE AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL PE PE HO HO HO HO HO HO HO HO HO HO HO HO OH OH OH OH OH OH Blanched polymer chain Three-dimensional network structure

  19. Cellulase or EX-AL - cellulase derivatives in Acetate buffer Measurement of Enzymic hydrolysis Filtration weight of residue Measurement of ratio of hydrolysis Glass filter Cellulose etc . Incubator with shaker ( 40 ℃ ) F i l t r a t e Separation high molecular mass ( enzyme ) low molecular mass ( sugar ) Repeated use of recovery enzyme P r e s s u r e Residue ( Enzyme fraction ) Polysulfone membrane filter ( cut off 1.0 X 10 k 4 Da ) Instrument of ultrafiltration Sugar solution by enzymic hydrolysis Analysis of sugar ( HPLC column for analysis of sugar ) Scheme. Repeating hydrolysis of cellulosic materials by cellulase or PE-AL - cellulase complex using ultrafiltration.

  20. Repeating hydrolysis of filter paper (A) and PHA-pulp Repeating hydrolysis of filter paper (A) and PHA-pulp (B) by cellulase and PE-AL - cellulase complex. (B) by cellulase and PE-AL - cellulase complex. Relative cellulase activity (%) 100 100 (A) (B) 80 80 60 60 40 40 20 20 0 0 2 4 6 8 10 0 0 2 4 6 8 Reaction time (day) Reaction time (day) Hydrolysis conditions: Substrate, 3 g; Cellulase, 240 mg; PE-AL, 0 wt.% ( ) and 0.2 wt% ( ) based on 300 mL of the buffer solution .

  21. Introduction EPEG-AL(13,2) mono-functionalize PEGDE-AL(13,1) 28 mN/m Conc./g mL -1 EPEG-AL(13,4) TritonX-100 Conc./g mL -1 increase in Time /sec PEG Conc./g mL -1

  22. Preparation LAEO-AL , LAEO-KL LAEO H 3 C CH 2 O CH CH 2 O CH 2 CH CH 2 2 11 15 O lauryl alcohol ( EO ) 15 glycidylether EO ( % ) HLB LAEO-AL(3) 63.0 12.6 LAEO-AL(6) 68.4 13.7 LAEO-KL(5) 65.4 13.1 LAEO-KL(10) 70.5 14.1 * Parenthesis is a weight ratio of Conc./g mL -1 LAEO/lignin

  23. Surface Activit y LAEO-AL , LAEO-KL LAEO LAEO-AL(3) LAEO-AL(6) 80 80 80 Surface tension (mN/m) 70 7.8 × 10 -4 g/mL 2.0 × 10 -4 g/mL Surface tension (mN/m) Surface tension (mN/m) 70 70 1.3 × 10 -4 g/mL 34 mN/m 34 mN/m 60 31 mN/m 60 60 50 50 50 40 40 40 30 30 30 20 10 -6 10 -4 10 -2 1 20 20 10 -6 10 -4 10 -2 1 10 -6 10 -4 10 -2 Conc./g mL -1 1 Conc./g mL -1 Conc./g mL -1 LAEO-KL(5) LAEO-KL(10) Conc./g mL -1 Conc./g mL -1

  24. Utilization of unbleached pulp. - Inclusion compounds and Stimuli-responsive gel-

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend