identification of fluorophores
play

IDENTIFICATION OF FLUOROPHORES IN AQUATIC NATURAL DISSOLVED - PowerPoint PPT Presentation

3rd Student Workshop on Ecology and Optics of Coastal Zones 10 - 13 July 2017 Museum of the World Ocean, Kaliningrad, Russia 5444'N 2029'E IDENTIFICATION OF FLUOROPHORES IN AQUATIC NATURAL DISSOLVED ORGANIC MATTER Trubetskaya ..*


  1. 3rd Student Workshop on Ecology and Optics of Coastal Zones 10 - 13 July 2017 Museum of the World Ocean, Kaliningrad, Russia 54°44'N 20°29'E IDENTIFICATION OF FLUOROPHORES IN AQUATIC NATURAL DISSOLVED ORGANIC MATTER Trubetskaya О.Е.* , Trubetskoj О.А. ** * Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow region, Russia **Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow region, Russia

  2. Suwannee River, Georgia, USA SRNOM international standard 1R101N С SRNOM =40 mg/L

  3. SRNOM isolation by reverse osmosis

  4. Scheme of experiment 1 step Aromatic amino Preparative SEC-PAGE fractionation, SRNOM acids: dialysis and lyophilization of fractions Tyrosine Tryptophan Fraction Fraction Fraction А В C+D 3D - excitation/emission matrix fluorescence 2 step analysis of fractions Analytical reversed-phase high-performance liquid 3 step chromatography with multi-wavelength fluorescence detection of retention times and emission spectra of humic-like and protein-like fluorophores Trubetskaya O.E., Richard C., Trubetskoj O.A. 2016. Environmental Chemistry Letters 14:495-500

  5. Preparative SEC fractionation in 7M urea and analytical 1. electrophoresis in 10% PAG as testing system С+ D Electrophoresis in 10% PAG A 280 SEC on Sephadex G-75 column I II III IV V VI VII VIII IX X _ 0,4 1.5х100см A В В’ 0,2 А B C+D 0,0 I II III IV V VI VII VIII IX X 1 2 3 4 5 6 7 8 9 10 0 40 80 120 160 Elution volume, ml + A B C+D Dialysis through 10 kDa Fraction А - 4% cellulose tubes and lyophilization of fractions Fraction B - 10% Fraction C+D - 35% М S А > М S В > М S C+D>10kDa Organic matter with М S<10k Д a – 51% Трубецкой О.А., Трубецкая О.Е., Ришар К. 2009. Водные ресурсы 36:543 -550 Trubetskaya O.E., Richard C., Trubetskoj O.A. 2015. Environmental Science and Pollution Res. 14:495-500 Trubetskaya O.E., Richard C.,Voyard G., Marchenkov V.V.,Trubetskoj O.A. 2016. Desal. Water Treatm. 57:5358-5364

  6. 3D - excitation/emission matrix fluorescence 2. analysis of fractions A, B and C+D М S А > М S В > М S C+D>10k Д a А 270=0.05 a.u.

  7. 3D- и 2 D- fluorescence analysis of fractions A, B and C+D and selection of optimal conditions for RP-HPLC Fraction А SRNOM 2D-fluorescence spectra λех=270 нм, А270=0.05 a.u. 100 SRNOM SRNOM 80 Fluorescence intensity 60 C+D 40 A 20 B 0 350 400 450 500 550 600 650 700 Wavelength, nm Fraction В Fraction C+D 2,0 Absorbance spectra C+D С=50 mg/L 1,5 B Absorbance 1,0 SRNOM SRNOM 0,5 0,0 A 200 300 400 500 600 700 Wavelength, nm

  8. Analytical reversed-phase high-performance 3. liquid chromatography with multi-wavelength fluorescence detection Humic-like fluorophores detection Fluorescence Fluorescence λ ex/ λ em = 270 nm/ 450 nm intensity intensity 250 30 1 Fraction А SRNOM 1 200 Protein-like fluorophores detection 20 150 λ ex/ λ em = 270 nm/ 330 nm 3a (4.9min) 4a (5.8min) 100 2 3 10 2 3 1a 4 50 4 (1.9min) 5 5 6 6 7 Fluorescence Tryptophan 0 intensity 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 (5.8min) 1 100 30 60 Fraction В Fraction C+D 80 20 60 40 1 Tyrosine 40 (1.9min) 10 2 3 3a 2 3 20 4a 20 4 4 5 1a 5 6 6 7 0 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Retention time (min) Retention time (min) Retention time (min)

  9. Fluorescence spectra of chromatographic peaks 1а, 3а, 4а and amino acids tyrosine and tryptophan from the data of multi-wavelength fluorescence detector at λ ex = 270 nm, λ em = 290-580 nm Fluorescence Fluorescence intensity intensity 120 Tryptophan Tyrosine 90 90 60 Peak 1а Peak 3а 60 30 30 0 0 Peak 4а 300 350 400 450 300 350 400 450 Wavelength, nm Wavelength, nm Retention time : Tyrosine - 1.9 min Tryptophan - 5.8 min Peak 1а - 1.9 min Peak 4а - 5.8 min Peak 3а - 4.9 min

  10. CONCLUSIONS • Himic-like fluorescence of SRNOM is caused by the sum of several fluorophores having different emission maxima - hydrophilic with λ = 435 nm and several hydrophobic ones with λ = 450 -465 nm • About 50% of the protein-like fluorescence of SRNOM is due to the presence of free amino acids of tyrosine and tryptophan in the fractions of the largest and average molecular size • The detection of free amino acids in the aquatic NOM is extremely important for understanding the role of DOM as a natural archive of amino acids and potential source of structural components for protein synthesis as the basis of life.

  11. Sandro Botticelli "The Birth of Venus" 1482-1486

  12. The work has been supported by: • COBASE, USA • Russian Foundation for Basic Research 13-05-00241 and 15-04- 00525 • International project №12 between CNRS (France) – RAS(Russia)

  13. Спектры флуоресценции хроматографических пиков по данным мультиволнового детектора флуоресценции, настроенного на λвоз = 270нм, λисп = 290 - 580 нм Интенсивность 1. Гуминоподобный Интенсивность флуоресценции гидрофильный флуоресценции СуРОВ Фракция А флуорофор (пик 1) – 250 1 25 λмакс = 435 нм 1 1a 200 20 2. Гуминоподобные 3a 150 гидрофобные 15 4a флуорофоры (пики 2 -7) 100 3 10 λмакс = 450 - 465 нм 2 2-3 4 50 5 5 4 3. Белковоподобные 0 0 1a 6-7 6 5 флуорофоры (пики 2 -7) 300 350 400 450 300 350 400 450 λмакс = 350 нм 4. Свободные Фракция C+D 1 Фракция В 100 25 аминокислоты 80 20 тирозин (пик 1а) с 1 60 15 λмакс = 300 нм, время выхода с колонки – 40 10 1a 2-3 4a 1.9мин 2 3a 20 5 4 3 5 4 триптофан (пик 4а) 0 0 5 6 1a 6-7 λмакс = 350 нм, время 300 350 400 450 300 350 400 450 выхода с колонки – Длина волны (нм) Длина волны (нм) 5.8мин

  14. 3D- флуоресцентные диаграммы РОВ трех водных источников различного генезиса и географического положения А270=0.05 о.е. Река Сувани Онежское озеро Водопроводное озеро Джорджия, США Карелия, Россия Карелия, Россия Emission wavelength, nm Emission wavelength, nm Emission wavelength, nm

  15. • Важнейшим свойством и отличительной чертой класса ГВ от биологических молекул является их устойчивость к разложению микроорганизмами и другими абиотическими факторами • ГВ проявляют ярко выраженные поверхностно - активные свойства • ГВ образуют коллоидные растворы со средним минимальным диаметром частиц от 90 до 200 Ǻ

  16. Концентрация кислород - содержащих функциональных групп в составе средней ГВ Функциональные Мг - экв/грамм группы СООН 4,5 Фенольные ОН 2,1 Спиртовые ОН 2,8 Хиноидные С=О 2,5 Кетонные С=О 1,9 ОСН 3 0,3 M. Schnitzer, 1991, Soil Science

  17. Гипотетические модели строения гуминовых веществ Макромолекулярная модель Супрамолекулярная модель Wershaw, 1986 Kleinhempel, 1970 Piccolo, 1997 Hutta et al., J.Chromatography, 2011

  18. Твердофазный 13 C- ЯМР ГК чернозема и фракций A, B и C+D HA HAU A B C+D 300 250 200 150 100 50 0 ppm Trubetskoj O. А. , Hatcher P.G., Trubetskaya O.E. 2010, Chemistry and Ecology 26, 315-325

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend