complex langevin dynamics in 1 1d qcd at finite densities
play

Complex Langevin Dynamics in 1+1D QCD at finite densities SIGN - PowerPoint PPT Presentation

Complex Langevin Dynamics in 1+1D QCD at finite densities SIGN workshop Sebastian Schmalzbauer supervisor: Jacques Bloch September 29 th , 2015 1 1 Motivation QCD phase diagram many other systems also plagued by sign problem find


  1. Complex Langevin Dynamics in 1+1D QCD at finite densities SIGN workshop Sebastian Schmalzbauer supervisor: Jacques Bloch September 29 th , 2015

  2. 1 1 Motivation • QCD phase diagram • many other systems also plagued by sign problem ⇒ find new methods to cure it • But why low dimensional QCD? • sign problem already present • study viability of the complex Langevin method • can compare with analytical results (0+1D) or other methods (1+1D) 1 / 22

  3. 1 1 QCD at finite µ : Partition Function • partition function (1 flavour) after integrating over fermions � D [ U ] det D [ U ] e − S G [ U ] Z = • staggered Dirac operator at chemical potential µ : d − 1 � � � η k ,ν U k ,ν e a µδ ν, 0 δ k +ˆ ν, l − U − 1 ν,ν e − a µδ ν, 0 δ k − ˆ D k , l = m δ k , l + , ν, l k +ˆ 2 a ν = 0 with quark mass m , staggered phase η = ± 1, antiperiodic boundary conditions in time direction and U ∈ SL ( 3 , ❈ ) • chiral symmetry not explicitly broken for m = 0 • µ = 0 det D ∈ ❘ µ � = 0 det D ∈ ❈ ⇒ importance sampling not possible 2 / 22

  4. 1 1 Complex Langevin Dynamics • Langevin equation for Gell-Mann representation ( λ a ) � ( dU x ,µ ) U − 1 x ,µ = − λ a ( D a , x ,µ S ( U ) dt + dw a , x ,µ ) , a with independent Wiener increments dw a , x ,µ and group derivative D a , x ,µ S ( U ) = ∂ α S ( e i αλ a U x ,µ ) | α = 0 • discrete time evolution = SL ( 3 , ❈ ) rotation � a ( ǫ K a , x ,µ + √ ǫη a , x ,µ ) U x ,ν x ,ν = e i λ a ′ U • drift K a , x ,µ different for Euler, Runge-Kutta schemes 1 • gaussian noise � η a , x ,µ � = 0 � η a , x ,µ η b , y ,ν � = 2 δ ab δ xy δ µν 1 Chang ’87, Batrouni et al. ’85, Bali et al. ’13 3 / 22

  5. 1 1 Equivalence to Fokker-Planck Equation • FP: real fields with complex probability � � d x O ( x ) ρ ( x ; t ) = d x d y O ( x + iy ) P ( x , y ; t ) CL: complex fields with real probability expect correct expectation values as long as 2 • solution of FPE asymptotes to correct probability distribution det D e S G t →∞ ρ ( x , t ) lim → • boundary terms in partial integration step vanish • sufficient falloff of probability distribution • singular drifts (det D = 0) suppressed enough ⇒ gauge cooling 2 Aarts, James, Seiler, Stamatescu ’10 ’11 Nagata, Nishimura, Shimasaki ’15 4 / 22

  6. 1 1 0+1D Gauge Cooling • Dirac determinant can be reduced to � � e µ/ T P + e − µ/ T P − 1 + 2 cosh ( µ c / T ) det ( D ) ∝ det , with Polyakov loop P = Π t U t and effective mass a µ c = arsinh ( am ) • reduce unitarity norm � � � � − 1 − 2 � P † P + P † P ||U|| = tr x ,µ P → GPG − 1 via SL ( 3 , ❈ ) gauge trafos • diagonalizing P = maximal cooling 5 / 22

  7. 1 1 Equivalence to Eigenvalue Representation • diagonalizing P � = working in eigenvalue representation   e i φ 1 0 0   e i φ 2 P = 0 0 φ 1 , φ 2 ∈ ❈   e − i φ 1 − i φ 2 0 0 • gauge cooling not required • additional term in the action (and hence in the drift) S = − log J − log det D , arising from the Haar measure � φ 1 − φ 2 � � 2 φ 1 + φ 2 � � φ 1 + 2 φ 2 � J ( φ 1 , φ 2 ) = sin 2 sin 2 sin 2 2 2 2 6 / 22

  8. 1 1 0+1D: Results quark density n q chiral condensate Σ 3 0.4 analytic 0.35 uncooled 2.5 chiral condensate Σ quark density n q cooled 0.3 2 0.25 analytic 1.5 uncooled 0.2 cooled 0.15 1 0.1 0.5 0.05 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 chemical potential µ/T chemical potential µ/T 20 20 | Δ n q |/ σ 15 15 | ΔΣ |/ σ 10 10 5 5 3 σ 3 σ 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 • uncooled results results have significant deviation 3 • cooled results look good, but not perfect for all µ • Polyakov loop looks fine for all µ 3 analytic results: Bilic, Demeterfi ’88 7 / 22

  9. 1 1 General Effects of SL ( 3 , ❈ ) Gauge Trafos • measurement of observables are invariant O ( P ) = O ( GPG − 1 ) • drift term K a and gauge cooling step commute K a ( GPG − 1 ) λ a = K a ( P ) G λ a G − 1 • noise distribution η a used in the CL step is not invariant 4 η a λ a � = η a G λ a G − 1 ⇒ SL ( 3 , ❈ ) gauge trafos and CL step do not commute ⇒ apply gauge cooling: different trajectories 4 SU(3) gauge trafos leave the noise distributions invariant 8 / 22

  10. 1 1 0+1D: Effects of Gauge Cooling effect on det D distribution: • compressed in imaginary direction • avoids the origin 40 40 30 30 20 20 10 10 Im(det D) ⇒ 0 0 10 10 20 20 30 30 40 40 20 0 20 40 60 80 100 120 20 0 20 40 60 80 100 120 Re(det D) Re(det D) effect on observable distribution: broad ⇔ narrow distribution 10 1 10 0 Σ = 0.1010(4) uncooled tr P = 0.647(1) uncooled Σ = 0.08315(9) cooled tr P = 0.6587(8) cooled 10 0 10 -1 Σ = 0.0831 tr P = 0.6590 distribution distribution 10 -1 10 -2 10 -2 10 -3 10 -3 10 -4 10 -4 10 -5 10 -5 -4 -2 0 2 4 -6 -4 -2 0 2 4 6 9 / 22 chiral condensate Σ Polyakov loop tr P

  11. 1 1 From 0+1D to dD • lattice volume V = N t N d − 1 s • size of Dirac operator increases: 3 V × 3 V • time to compute D − 1 : ∝ V 3 • general gauge trafos GUG − 1 G x U x ,ν G − 1 → x +ˆ ν ⇒ gauge cooling via diagonalizing no longer works! • can include gauge action S G ⇒ extra drift term • we worked in 1+1D with strong coupling on 4 × 4 lattices 10 / 22

  12. 1 1 Gauge Cooling in Higher Dimensions � � � � − 1 − 2 • unitarity norm ||U|| = � U † U † x ,µ U x ,µ + x ,µ tr x ,µ U x ,µ • minimize via SL ( 3 , ❈ ) gauge trafos: G x U x ,µ G − 1 U x ,µ → x +ˆ µ using steepest descent 10 0 10 0 10 -2 10 -1 unitarity norm ||U|| unitarity norm ||U|| 10 -4 10 -2 10 -6 10 -3 cooled 10 -8 µ=0 uncooled 10 -4 10 -10 µ=0.11 uncooled 10 -5 10 -12 µ=0.25 uncooled µ=0.25 cooled 10 -6 10 -14 µ=0.11 cooled 10 -16 10 -7 0 100000 200000 300000 400000 500000 0 50000 100000 150000 200000 250000 300000 Langevin time Langevin time ⇒ even for µ = 0 we need distance from SU(3) depends gauge cooling on µ 11 / 22

  13. 1 1 Convergence with Stepsize • interested in continuum solution ǫ → 0 µ = 0 . 07 µ = 0 . 25 2 2.4 subsets: 2.02(2) chiral condensate Σ chiral condensate Σ 1.8 2.2 convergence ∝ ε subsets: 2.22(1) 1.6 convergence ∝ ε 2 1.4 Euler uncooled Euler uncooled 1.2 1.8 Runge-Kutta uncooled Runge-Kutta uncooled Euler cooled Euler cooled 1 1.6 Runge-Kutta cooled Runge-Kutta cooled 0.8 10 -4 10 -3 10 -2 10 -4 10 -3 10 -2 stepsize ε stepsize ε • uncooled simulation is stable, but converges to a wrong limit • for some µ even the cooled simulation does not converge correctly (benchmark: subset method 5 ) 5 J. Bloch, F. Bruckmann, T. Wettig, ’12 ’14 12 / 22

  14. 1 1 1+1D Results: Chiral Condensate 2.5 m=0.1 m=0.5 uncooled cooled subsets 2 m=1.0 chiral condensate Σ 1.5 m=2.0 1 m=0.01 0.5 0 0 0.5 1 1.5 2 chemical potential µ 13 / 22

  15. 1 1 1+1D Results: Quark Density 3.5 m=0.1 m=0.5 m=1.0 m=2.0 3 2.5 quark density n q 2 1.5 1 0.5 uncooled cooled subsets 0 0 0.5 1 1.5 2 chemical potential µ 14 / 22

  16. 1 1 1+1D results: Polyakov Loop 0.7 m=0.1 m=0.5 m=1.0 m=2.0 0.6 0.5 Polyakov loop tr P 0.4 uncooled cooled 0.3 subsets 0.2 0.1 0 -0.1 0 0.5 1 1.5 2 2.5 chemical potential µ 15 / 22

  17. 1 1 Effect of Gauge Cooling on det D (m=0.1) 1e 7 1e 7 1.0 1.0 0.5 0.5 Im(det D) ⇒ µ = 0 . 07 0.0 0.0 0.5 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.5 0.5 0.0 0.5 1.0 1.5 Re(det D) 1e 7 Re(det D) 1e 7 1e 7 1e 7 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 Im(det D) ⇒ µ = 0 . 25 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 Re(det D) 1e 7 Re(det D) 1e 7 ⇒ cooling not enough in some µ ranges for light quarks! 16 / 22

  18. 1 1 Effect of Gauge cooling on det D (m=2.0) 1e17 1e17 1.0 1.0 0.5 0.5 Im(det D) ⇒ µ = 1 . 25 0.0 0.0 0.5 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.5 0.5 0.0 0.5 1.0 1.5 Re(det D) 1e17 Re(det D) 1e17 1e17 1e17 2 2 1 1 Im(det D) ⇒ µ = 1 . 50 0 0 1 1 2 2 0.5 0.0 0.5 1.0 1.5 2.0 2.5 0.5 0.0 0.5 1.0 1.5 2.0 2.5 Re(det D) 1e18 Re(det D) 1e18 ⇒ cooling works in all µ ranges for heavy quarks! 17 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend