pde methods for statistical physics
play

PDE methods for statistical physics Julien Roussel Cermics, ENPC - PowerPoint PPT Presentation

Overdamped Langevin dynamics The Langevin dynamics PDE methods for statistical physics Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials November 9, 2016, Cermics Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE


  1. Overdamped Langevin dynamics The Langevin dynamics PDE methods for statistical physics Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials November 9, 2016, Cermics Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 1 / 19

  2. Overdamped Langevin dynamics The Langevin dynamics The Overdamped Langevin dynamics N particles at positions q t = ( q 1 , · · · , q N ) ∈ D � 2 β − 1 d W t d q t = −∇ V ( q t ) d t + d W t : Brownian motion V ( q ) : potential, for example V ( q ) = � 1 ≤ i < j ≤ N v ( | q i − q j | ) β − 1 = k B T is fixed Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 2 / 19

  3. Overdamped Langevin dynamics The Langevin dynamics Invariant measure Maxwell-Boltzmann distribution: ν ( d q ) = Z − 1 ν e − β V ( q ) d q (1) Unique invariant measure : � ∀ ϕ, E [ ϕ ( q t ) | q 0 ∼ ν ] = E ν [ ϕ ] = ϕ ( q ) d ν ( q ) (2) D Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 3 / 19

  4. Overdamped Langevin dynamics The Langevin dynamics Generator of the dynamics Let ϕ and q ∈ D , the generator L is defined by ( L ϕ )( q ) := d d t E [ ϕ ( q t ) | q 0 = q ] (3) = β − 1 ∆ ϕ ( q ) − ∇ V · ∇ ϕ ( q ) using Itô calculus. Denoting � � ϕ, ψ � = (4) ϕ ψ d ν D the scalar product on L 2 ( ν ) and ∗ the associated adjoint � � − β − 1 ∇ ϕ · ∇ ψ d ν. � ϕ, L ψ � = ϕ L ψ d ν = (5) D D We denote L = − β − 1 ∇ ∗ ∇ , it is self-adjoint in L 2 ( ν ) . Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 4 / 19

  5. Overdamped Langevin dynamics The Langevin dynamics Proof: Uniqueness of the invariant measure Let us prove that ν is the unique invariant measure. Let f a density of probability such that � ∀ ϕ, 0 = d d d t E [ ϕ ( q t ) | q 0 ∼ f ] = d t E [ ϕ ( q t ) | q 0 = q ] f ( q ) d q D � � � L ϕ, f = L ϕ ( q ) f ( q ) d q = ν D (6) then 0 = L ∗ � � � � f f = L ν ν � � �� = − β − 1 � � �� 2 � � f f f ie. 0 = ν , L � ∇ � ν ν so f = ν since they are normalized. Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 5 / 19

  6. Overdamped Langevin dynamics The Langevin dynamics Convergence of empirical averages � t ϕ t = 1 Let � 0 ϕ ( q s ) d s the empirical mean of ϕ . t The dynamics can be shown to be ergodic ϕ t − − − → � t →∞ E ν [ ϕ ] a.s. (7) and Central Limit Theorem : � � √ L 0 , σ 2 t ( � ϕ t − E ν [ ϕ ]) − t →∞ N − − → (8) ϕ Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 6 / 19

  7. Overdamped Langevin dynamics The Langevin dynamics Convergence of empirical averages � t ϕ t = 1 Let � 0 ϕ ( q s ) d s the empirical mean of ϕ . t The dynamics can be shown to be ergodic ϕ t − � t →∞ E ν [ ϕ ] a.s. − − → (7) and Central Limit Theorem : � � √ L 0 , σ 2 t ( � ϕ t − E ν [ ϕ ]) − t →∞ N − − → (8) ϕ But what is σ ϕ ? Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 6 / 19

  8. Overdamped Langevin dynamics The Langevin dynamics Calculus: Asymptotic variance Suppose E ν [ ϕ ] = 0, then the asymptotical variance of ϕ is σ 2 ϕ t 2 ] . ϕ = lim t →∞ t E [ � (9) where � t � t � t � � 2 ] = 1 1 − s E [ ϕ ( q s ) ϕ ( q s ′ )] d s d s ′ = 2 t E [ � ϕ t E [ ϕ ( q 0 ) ϕ ( q s )] d s t t 0 0 0 � ∞ � t E [ ϕ ( q 0 ) e s L ϕ ( q 0 )] d s − t →∞ 2 − − → E [ ϕ ( q 0 ) ϕ ( q s )] d s = 2 0 0 � t � � ϕ ( q 0 ) , e s L ϕ ( q 0 ) = 2 d s 0 so � � σ 2 ϕ, L − 1 ϕ ϕ = − 2 (10) . Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 7 / 19

  9. Overdamped Langevin dynamics The Langevin dynamics Application 1.6 2 V(q) q 1.4 1.5 nu(q) mean of q 95% 1 1.2 energy saddle 0.5 1 Position q 0 0.8 -0.5 0.6 energy well energy well -1 0.4 -1.5 0.2 -2 0 20 40 60 80 100 0 -1.5 -1 -0.5 0 0.5 1 1.5 Time t 2 q 1.5 mean of q 95% 1 0.5 Position q 0 -0.5 -1 -1.5 -2 0 200 400 600 800 1000 Time t Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 8 / 19

  10. Overdamped Langevin dynamics The Langevin dynamics Coercivity of the generator Decompose the function space into an orthogonal direct sum � � L 2 ( ν ) = L 2 with L 2 ϕ ∈ L 2 ( ν ) | E ν [ ϕ ] = 0 0 ( ν ) ⊕ R 1 , 0 ( ν ) = (11) Reminder : L ( 1 ) = 0 Poincaré-Wirtinger for ϕ ∈ L 2 0 ( ν ) : 1 − � ϕ, L ϕ � = β − 1 �∇ ϕ � 2 ≥ C β � ϕ � 2 (12) −L is coercive so invertible on L 2 0 ( ν ) . Therefore σ 2 ϕ ≤ C β � ϕ � 2 . Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 9 / 19

  11. Overdamped Langevin dynamics The Langevin dynamics Exponential decay and inversibility Take ϕ 0 ∈ L 2 0 ( µ ) and ϕ ( t ) = e t L ϕ 0 , and define H ( t ) = 1 2 � ϕ ( t ) � 2 H ′ ( t ) = �L ϕ ( t ) , ϕ ( t ) � ≤ − 1 C β � ϕ ( t ) � 2 = − 2 C β H ( t ) . (13) By Gronwall H ( t ) ≤ e − 2 t / C β H ( 0 ) 0 ( µ )) ≤ e − t / C β , � e t L � B ( L 2 ie. (14) so on L 2 0 ( µ ) � ∞ L − 1 = − e t L �L − 1 � B ( L 2 and 0 ( µ )) ≤ C β. (15) 0 Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 10 / 19

  12. Overdamped Langevin dynamics The Langevin dynamics The Langevin dynamics � positions q t = ( q 1 , · · · , q N ) ∈ D N particles at momenta p t = ( p 1 , · · · , p N ) ∈ R D � d q t = p t d t � 2 γβ − 1 d W t = −∇ V ( q t ) d t − γ p t d t + d p t d W t : Brownian motion V ( q ) : potential, for example V ( q ) = � 1 ≤ i < j ≤ N v ( | q i − q j | ) β − 1 = k B T is fixed γ friction fixed Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 11 / 19

  13. Overdamped Langevin dynamics The Langevin dynamics Invariant measure Maxwell-Boltzmann distribution µ ( d q , d p ) = Z − 1 µ e − β H ( q , p ) d q is the unique invariant measure µ ( d q , d p ) = ν ( d q ) κ ( d p ) . Hamiltonian : H ( q , p ) = V ( q ) + 1 2 | p | 2 (16) Limit γ → 0 : Hamiltonian system Limit γ → ∞ + time scaling : Overdamped Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 12 / 19

  14. Overdamped Langevin dynamics The Langevin dynamics Generator of the dynamics Let ϕ and q ∈ D , the generator L is defined by ( L ϕ )( q ) := d d t E [ ϕ ( q t ) | q 0 = q ] (17) = p ∇ q − ∇ V ⊤ ∇ p − γβ − 1 ∇ ∗ p ∇ p = L ham + γ L FD using Itô calculus. Antisymetric transport part L ∗ ham = −L ham Symmetric fluctuation-dissipation part L FD ∗ = L FD Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 13 / 19

  15. Overdamped Langevin dynamics The Langevin dynamics Kernel of the generator Let ϕ such that L ϕ = 0. Then 0 = � ϕ, L ϕ � = � ϕ, L FD ϕ � = − β − 1 �∇ p ϕ � 2 ⇒ ϕ = ϕ ( q ) (18) so 0 = L ϕ = p ⊤ ∇ q ϕ ⇒ ϕ ∈ R 1 . Therefore Ker ( L ) = Ker ( L ∗ ) = R 1 . But not coercive � ϕ, −L ϕ � = β − 1 �∇ p ϕ � 2 � � � ϕ � 2 (19) Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 14 / 19

  16. Overdamped Langevin dynamics The Langevin dynamics Kernel of the generator Let ϕ such that L ϕ = 0. Then 0 = � ϕ, L ϕ � = � ϕ, L FD ϕ � = − β − 1 �∇ p ϕ � 2 ⇒ ϕ = ϕ ( q ) (18) so 0 = L ϕ = p ⊤ ∇ q ϕ ⇒ ϕ ∈ R 1 . Therefore Ker ( L ) = Ker ( L ∗ ) = R 1 . But not coercive � ϕ, −L ϕ � = β − 1 �∇ p ϕ � 2 � � � ϕ � 2 (19) So is it invertible ? Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 14 / 19

  17. Overdamped Langevin dynamics The Langevin dynamics Hypocoercivity It suffices to show ∀ ϕ ∈ L 2 0 ( µ ) , ∀ t ≥ 0 , � e t L ϕ � ≤ C e − α t � ϕ � (20) to have on L 2 0 ( µ ) � ∞ �L − 1 � ≤ C L − 1 = − e t L d t , and α . (21) 0 Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 15 / 19

  18. Overdamped Langevin dynamics The Langevin dynamics Proof: Hypocoercivity 2 � ϕ � 2 − ε � ϕ, A ϕ � where Define H [ ϕ ] = 1 � A = ( 1 + ( L ham Π p ) ∗ ( L ham Π p )) − 1 ( L ham Π p ) ∗ (22) � Π p ϕ = R D ϕ ( q , p ) d κ ( p ) Check � · � 2 ∼ H [ · ] d t H [ e t L ϕ ] ≤ α ′ � ϕ � 2 ≤ 2 α ′ d Prove 1 + ε H [ ϕ ] Conclude using the Gronwall lemma and the norm equivalence Julien Roussel Cermics, ENPC Equipe-projet INRIA Matherials PDE methods for statistical physics 16 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend