combinatorics of the pasep partition function
play

Combinatorics of the PASEP partition function Matthieu Josuat-Verg` - PowerPoint PPT Presentation

Combinatorics of the PASEP partition function Matthieu Josuat-Verg` es Universit e Paris-sud 11 FPSAC 2010 August 2nd 1 / 35 Introduction The Partially Asymmetric Self-Exclusion Process (PASEP) is a probabilistic model describing the


  1. Combinatorics of the PASEP partition function Matthieu Josuat-Verg` es Universit´ e Paris-sud 11 FPSAC 2010 August 2nd 1 / 35

  2. Introduction The Partially Asymmetric Self-Exclusion Process (PASEP) is a probabilistic model describing the evolution of particles in a finite number N of sites. q . dt dt q . dt β. dt α. dt dt In the time interval dt , possible events are: ◮ if ◦ , the leftmost site becomes • with probability α. dt ◮ if • , the rightmost site becomes ◦ with probability β. dt ◮ •◦ becomes ◦• with probability dt ◮ ◦• becomes •◦ with probability q . dt 2 / 35

  3. Introduction The partition function Z N is the normalization constant for stationary probabilities (such that non-normalized probabilities of each state is polynomial in the parameters). Z N is a polynomial in α , 1 1 β , q . Many physical quantities can be obtained from the partition function (phase diagram, correlation functions, currents, density profile...) There are various ways to obtain the partition function: ◮ Matrix-product form of Z N [Derrida & al] ◮ Generating function of lattice paths [Brak & al] ◮ Generating function of permutation tableaux, permutations [Corteel Williams] 3 / 35

  4. Introduction Theorem (Derrida & al) Let D and E be matrices, W a row vector, V a column vector, such that: WE = 1 DV = 1 DE − qED = D + E , α W , β V , WV = 1 , then for any m word in D and E of length N, ◮ WmV defines a unique polynomial in 1 α , 1 β , q, ◮ and it is the non-normalized probability of the state m (under D ↔ • , E ↔ ◦ ) Example DED = qEDD + DD + ED , so the non-normalized probability of • ◦ • is αβ 2 + 1 q β 2 + 1 WDEDV = αβ . 4 / 35

  5. It follows that the sum of non-normalized probabilities, is � WmV = W ( D + E ) N V Z N = m ∈{ D , E } N It is interesting to consider an extra variable y and define Z N ( y ) = W ( yD + E ) N V This way, the coefficient of y k in Z N ( y ) corresponds to states with exactly k particles. Example � y 2 D 2 + y ( DE + ED ) + EE � Z 2 ( y ) = W V � y 2 D 2 + y � � � = W (1 + q ) ED + D + E + EE V = y 2 � 1 + q + 1 β + 1 + 1 � β 2 + y α 2 αβ α 5 / 35

  6. α − 1, ˜ α = (1 − q ) 1 β = (1 − q ) 1 Let ˜ β − 1. It is possible to give explicit D , E , W , V satisfying DE − qED = D + E , WE = 1 α W , DV = 1 β V , WV = 1 [Derrida & al]. 1 + ˜ 1 − q (0)  β  1 + ˜ 1 − q 2 β q   1  1 + ˜  β q 2 1 − q 3 D = ,   1 − q ...   1 + ˜ β q 3   ... (0)  1 + ˜ α (0)  α ˜ 1 − ˜ β 1 + ˜ α q 1   α ˜  α q 2  E = 1 − ˜ β q 1 + ˜ ,   1 − q   α ˜ β q 2 α q 3 1 − ˜ 1 + ˜   ... ... (0) V = (1 , 0 , 0 , . . . ) ∗ . W = (1 , 0 , 0 , . . . ) , 6 / 35

  7. Introduction yD + E is tridiagonal and can be thought as a transfer matrix, then   1 0   Z N ( y ) = (1 , 0 , 0 , . . . )( yD + E ) N   0    .  . . shows that Z N ( y ) is a generating function of weighted Motzkin paths. 7 / 35

  8. Introduction Motivated by the PASEP and the links with permutations, we want to evaluate Z N , characterized by (1 − q ) N Z N = � w ( P ) Motzkin path P of length N where the weight w ( P ) is the product of 1 − q h +1 for a step ր at height h to h + 1, ✄ α + y ˜ β ) q h (1 + y ) + (˜ for a step → at height h , ✄ α ˜ β q h − 1 ) y (1 − ˜ for a step ց at height h to h − 1, ✄ α = (1 − q ) 1 α − 1, ˜ β = (1 − q ) 1 where ˜ β − 1. 8 / 35

  9. Introduction Theorem (Blythe & al) N 1 � Z N (1) = R N , n B n (1 − q ) N n =0 where ⌊ N − n ⌋ 2 ( − 1) i q ( i +1 �� �� 2 ) � n + i � 2 N 2 N � � � R N , n = − i N − n − 2 i N − n − 2 i − 2 q i =0 and n � n � α k ˜ � β n − k . B n = ˜ k q k =0 Proof. Diagonalize D + E in terms of q -Hermite polynomials, this gives an integral which can be simplified analytically. 9 / 35

  10. Introduction Theorem N 1 � Z N ( y ) = R N , n B n (1 − q ) N n =0 where ⌊ N − n ⌋ N − n − 2 i 2 � N ( − y ) i q ( i +1 2 ) � n + i y j �� N �� � � N N � �� � �� R N , n = − n +2 i + j j − 1 n +2 i + j +1 i q j i =0 j =0 and n � n � � α k ( y ˜ β ) n − k . B n = ˜ k q k =0 This will be proved bijectively. 10 / 35

  11. Outline N To prove (1 − q ) N Z N = � R N , n B n , the scheme is the following. n =0 ◮ Step 0. Define some sets Z N , R N , n , B n of weighted Motzkin paths, Z N having generating function (1 − q ) N Z N N ◮ Step 1. Give a weight-preserving bijection Z N → � R N , n × B n n =0 ◮ Step 2. Show that R N , n has generating function R N , n ◮ Step 3. Show that B n has generating function B n 11 / 35

  12. Outline N To prove (1 − q ) N Z N = � R N , n B n , the scheme is the following. n =0 ◮ Step 0. Define some sets Z N , R N , n , B n of weighted Motzkin paths, Z N having generating function (1 − q ) N Z N N ◮ Step 1. Give a weight-preserving bijection Z N → � R N , n × B n n =0 ◮ Step 2. Show that R N , n has generating function R N , n ◮ Step 3. Show that B n has generating function B n 12 / 35

  13. Step 0 (1 − q ) N Z N is the g.f. of Motzkin paths of length N , with weights: 1 − q h +1 for a step ր at height h to h + 1, ✄ α + y ˜ β ) q h (1 + y ) + (˜ for a step → at height h , ✄ α ˜ β q h − 1 ) y (1 − ˜ for a step ց at height h to h − 1. ✄ Instead of a weight 1 − q h +1 on steps ր , we can write 1 − q h +1 = (1 − q ) + ( q − q 2 ) + · · · + ( q h − q h +1 ) and consider that the weight is q i − q i +1 with 0 ≤ i ≤ h for a step ր at height h to h + 1. 13 / 35

  14. Step 0 Let Z N be the set of Motzkin paths of length N with weights q i − q i +1 with 0 ≤ i ≤ h for a step ր at height h to h + 1, ✄ α + y ˜ β ) q h 1 + y or (˜ for a step → at height h ✄ α ˜ β q h − 1 y or − y ˜ for a step ց at height h to h − 1. ✄ It is bigger than the original set of Motzkin paths since there are several possible choices on each step but the generating function is also (1 − q ) N Z N . 14 / 35

  15. Step 0 Let R N , n be the set of Motzkin paths of length N with weights q i − q i +1 with 0 ≤ i ≤ h for a step ր at height h to h + 1, ✄ 1 + y or q h for a step → at height h ✄ n steps having a weight q h , y for a step ց ✄ Let B n be the set of Motzkin paths of length n with weights q i − q i +1 with 0 ≤ i ≤ h for a step ր at height h to h + 1, ✄ α + y ˜ β ) q h (˜ for a step → at height h , ✄ α ˜ β q h − 1 − y ˜ for a step ց at height h to h − 1. ✄ 15 / 35

  16. Outline N To prove (1 − q ) N Z N = � R N , n B n , the scheme is the following. n =0 ◮ Step 0. Define some sets Z N , R N , n , B n of weighted Motzkin paths, Z N having generating function (1 − q ) N Z N N ◮ Step 1. Give a weight-preserving bijection Z N → � R N , n × B n n =0 ◮ Step 2. Show that R N , n has generating function R N , n ◮ Step 3. Show that B n has generating function B n 16 / 35

  17. Step 1 The bijection is best described in the direction N � R N , n × B n − → Z N n =0 Let ( H 1 , H 2 ) ∈ R N , n × B n . We build Λ( H 1 , H 2 ) ∈ Z N . The definition is given via an example. 17 / 35

  18. Step 1 H 1 = Let ( H 1 , H 2 ) ∈ R N , n × B n . We build Λ( H 1 , H 2 ) ∈ Z N : 1 − q Λ( H 1 , H 2 ) = q q − q 2 q 2 q 2 1 − q 1 − q q − q 2 y q − q 2 y α + y ˜ β ) q 3 (˜ q q 2 − q 3 y 1 − q q 0 y y α ˜ H 2 = β q 2 − y ˜ y α ˜ 1 − q − y ˜ β α + y ˜ (˜ β ) q 1 − q α ˜ − y ˜ β q α ˜ − y ˜ β 18 / 35

  19. Step 1 H 1 = Let ( H 1 , H 2 ) ∈ R N , n × B n . We build Λ( H 1 , H 2 ) ∈ Z N : 1 − q Λ( H 1 , H 2 ) = q q − q 2 q 2 q 2 1 − q 1 − q q − q 2 y q − q 2 y α + y ˜ β ) q 3 (˜ q q 2 − q 3 y 1 − q q 0 y y α ˜ H 2 = β q 2 − y ˜ y α ˜ 1 − q − y ˜ β α + y ˜ (˜ β ) q 1 − q α ˜ − y ˜ β q α ˜ − y ˜ β 19 / 35

  20. Step 1 H 1 = Let ( H 1 , H 2 ) ∈ R N , n × B n . We build Λ( H 1 , H 2 ) ∈ Z N : 1 − q Λ( H 1 , H 2 ) = q q − q 2 q 2 q 2 1 − q 1 − q q − q 2 y q − q 2 y α + y ˜ β ) q 3 (˜ q q 2 − q 3 y 1 − q q 0 y y α ˜ H 2 = β q 2 − y ˜ y α ˜ 1 − q − y ˜ β α + y ˜ (˜ β ) q 1 − q α ˜ − y ˜ β q α ˜ − y ˜ β 20 / 35

  21. Step 1 H 1 = Let ( H 1 , H 2 ) ∈ R N , n × B n . We build Λ( H 1 , H 2 ) ∈ Z N : 1 − q Λ( H 1 , H 2 ) = q q − q 2 q 2 q 2 1 − q 1 − q q − q 2 y q − q 2 y α + y ˜ β ) q 3 (˜ q q 2 − q 3 y 1 − q q 0 y y α ˜ H 2 = β q 2 − y ˜ y α ˜ 1 − q − y ˜ β α + y ˜ (˜ β ) q 1 − q α ˜ − y ˜ β q α ˜ − y ˜ β 21 / 35

  22. Step 1 H 1 = Let ( H 1 , H 2 ) ∈ R N , n × B n . We build Λ( H 1 , H 2 ) ∈ Z N : 1 − q Λ( H 1 , H 2 ) = q q − q 2 q 2 q 2 1 − q 1 − q q − q 2 y q − q 2 y α + y ˜ β ) q 3 (˜ q q 2 − q 3 y 1 − q q 0 y y α ˜ H 2 = β q 2 − y ˜ y α ˜ 1 − q − y ˜ β α + y ˜ (˜ β ) q 1 − q α ˜ − y ˜ β q α ˜ − y ˜ β 22 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend