functional approach to heat exchange application to the
play

FUNCTIONAL APPROACH TO HEAT EXCHANGE APPLICATION TO THE SPIN BOSON - PowerPoint PPT Presentation

CNR-SPIN (GENOVA) FUNCTIONAL APPROACH TO HEAT EXCHANGE APPLICATION TO THE SPIN BOSON MODEL: FROM MARKOV TO QUANTUM NOISE REGIME Matteo Carrega In collaboration with : Dr. P. Solinas Dr. A. Braggio Prof. M. Sassetti Prof. U. Weiss Outline


  1. CNR-SPIN (GENOVA) FUNCTIONAL APPROACH TO HEAT EXCHANGE APPLICATION TO THE SPIN BOSON MODEL: FROM MARKOV TO QUANTUM NOISE REGIME Matteo Carrega In collaboration with : Dr. P. Solinas Dr. A. Braggio Prof. M. Sassetti Prof. U. Weiss

  2. Outline ◮ Quantum Thermodynamics ◮ Path-integral approach to energy exchange ◮ Application to the spin-boson model ◮ Results for average heat and heat power

  3. Introduction Esposito RMP ’09, Campisi RMP ’11 ◮ Thermodynamics of small devices ◮ Definitions of work and heat at quantum level ◮ Precise measurement protocols

  4. Recent experiments Batalhao PRl ’14 • Measurement of work distribution • NMR study with RF field Work distribution − Closed system Verification of Jarzynski equality � e − β W � = Z ( τ ) Z (0)

  5. Recent experiments Pekola PRL ’13, Gasparinetti Phys. Applied ’15, Pekola Nat. Phys. ’15 Measurement of dissipated heat Hybrid electronic circuit → Temperature measurement of the environment

  6. Measurement protocol Tasaki ArXiv ’00, Talkner PRE ’07, Gasparinetti NJP ’14 H tot = H S ( t ) + H R + H I • Double measurement protocol ◮ initial state ρ tot ( t = 0) ◮ first projective measurement � E 1 p E 1 ◮ time evolution U ( t ) generated by H tot ◮ second projective measurement � E 2 p E 2

  7. Heat statistics P ( Q , t ) Probability distribution of energy exchange � P ( Q , t ) = δ ( E 2 − E 1 − Q ) P [ E 2 ; E 1 ] P [ E 1 ] E 1 , E 2 Conditional probability P [ E 2 ; E 1 ] U † ( t ) p E 2 U ( t ) p E 1 ρ tot (0) p E 1 � � P [ E 2 ; E 1 ] P [ E 1 ] = Tr � + ∞ −∞ dQe iQ ν P ( Q , t ) • Characteristic function G ν ( t ) = U † ( t ) e i ν H R U ( t ) e − i ν H R ρ tot (0) � � G ν ( t ) = Tr

  8. Heat statistics G ν ( t ) • G ν ( t ) Moment generating function ρ ( ν ) ν =0 = ( − i ) n d n Tr � � � Q n ( t ) � = ( − i ) n d n G ν ( t ) tot ( t ) � � � � d ν n d ν n ν =0 Generalized time evolution ρ ( ν ) tot ( t ) = U ν/ 2 ( t ) ρ tot (0) U † ν/ 2 ( t ) with U ν ( t ) = e i ν H R U ( t ) e − i ν H R Factorized initial condition ρ tot (0) = ρ S (0) ⊗ ρ R (0) = ρ S (0) ⊗ e − β H R Z R Standard approach: Master equation → Born-Markov approximation

  9. Functional integral Feynman Ann. Phys. ’63, Caldeira Phys. A ’83, Weiss ’99 Path integral approach − Reduced system dynamics � � � � D ξ e i S S [ η,ξ ] F FV [ η, ξ ] · e i ∆Φ ( ν ) [ η,ξ ] G ν ( t ) = d η i � η i | ρ S (0) | η i � d η f D η Generalization of Feynman-Vernon influence functional for heat exchange • n − th moment � Q n ( t ) � d n � d ν n e i ∆ φ ( ν ) [ η,ξ ] Φ ( n ) [ η, ξ ] = ( − i ) n � � � ν =0 Carrega NJP ’15

  10. Spin - boson model • Dissipative two level system ∆ ϵ H S = − ∆ 2 σ x − ǫ ( t ) 2 σ z state basis | R / L � with σ z | R / L � = ±| R / L � • low energy state of a double well potential v ( q ) q = q 0 σ z ∆ tunneling amplitude external bias ǫ = ǫ 0 + ǫ 1 ( t )

  11. Weak coupling Spectral function j ( ω ) ∝ K ω K coupling strength • Weak damping regime K ≪ 1 constant bias ǫ 0 • Total transferred heat Q ∞ ≡ lim t →∞ � Q ( t ) � = � E ini �−� E eq � � � δ 2 + ǫ 2 δ 2 + ǫ 2 Q ∞ = ( P R − P L ) ǫ 0 0 0 � � + tanh 2 2 2 T

  12. Markov regime � ∆ 2 + ǫ 2 • High temperature regime T > 0 Average heat power � P ( t ) � = � ˙ Q ( t ) � � P ( t ) � = π 2 K δ 2 − π KT ∆ [ � σ x ( t ) � s − ( P R − P L ) � σ x ( t ) � a ] 0 . 20 0 . 20 P R − P L = 1 T = 5∆ 0 . 15 P R − P L = 0 T = 10∆ P R − P L = − 1 T = 20∆ 0 . 10 0 . 15 0 . 05 � P ( t ) � � P ( t ) � 0 . 00 0 . 10 − 0 . 05 − 0 . 10 0 . 05 − 0 . 15 − 0 . 20 0 . 00 0 2 4 6 8 10 0 2 4 6 8 10 t t K = 0 . 02 ∆ = ǫ 0 = 1

  13. Quantum noise regime � ∆ 2 + ǫ 2 • Low temperature T < 0 Average heat power − quantum noise contributions � t � P ( t ) � = − ∆ � � d τ L ′ ( τ ) � σ x ( t − τ ) � s � σ z ( τ ) � s − � σ z ( t − τ ) � a � σ x ( τ ) � a 2 0 � t +∆( P R − P L ) � � d τ L ′ ( τ ) � σ x ( t − τ ) � a � σ z ( τ ) � s − � σ z ( t − τ ) � s � σ x ( τ ) � a + 2 0 0 . 06 → 0 . 2 T = 0 . 1∆ 0 . 04 T = 1∆ 0 . 1 T = 3∆ 0 . 02 0 . 0 0 . 00 → � P ( t ) � � Q ( t ) � − 0 . 1 − 0 . 02 − 0 . 2 − 0 . 04 − 0 . 3 − 0 . 06 → T = 0 . 1∆ T = 1∆ − 0 . 4 − 0 . 08 T = 3∆ − 0 . 10 − 0 . 5 0 5 10 15 20 0 5 10 15 20 25 30 35 40 t t K = 0 . 02 ∆ = ǫ 0 = 1

  14. Conclusions ◮ Functional integral approach to energy exchange ◮ Application to the spin-boson model ◮ Average heat and heat power ◮ Quantum noise contribution at low temperature

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend