inverse heat conduction problem using tc deconvolution
play

Inverse Heat Conduction Problem using TC deconvolution and IR - PowerPoint PPT Presentation

Inverse Heat Conduction Problem using TC deconvolution and IR measurements: Application to heat flux estimation in a Tokamak Application to heat flux estimation in a Tokamak JL. Gardarein, J. Gaspar IUSTI Laboratory Provence University JL.


  1. Inverse Heat Conduction Problem using TC deconvolution and IR measurements: Application to heat flux estimation in a Tokamak Application to heat flux estimation in a Tokamak JL. Gardarein, J. Gaspar IUSTI Laboratory Provence University JL. Gardarein, J. Gaspar 1 METTI-2011 Tutorial 11

  2. Summarize 1. Experimental Set-Up Problematic 2. Description of the method Application to a 1D Inverse Heat Conduction Problem 3. Application to a 2D experimental case (If we have time) JL. Gardarein, J. Gaspar 2 METTI-2011

  3. Plasma at T ~ 100 millions of degrés Lawson Critera: (Density) x (T ° ) x (Confinement Time) > 10 21 KeV.s.m -3 The tokamaks… The confinement is insuring with 2 magnetic fields : – an axial field produced with the toroidal coils – a poloidal field created with the plasma current – a poloidal field created with the plasma current The resulting magnetic fields are helicoïdal JL. Gardarein, J. Gaspar 3 METTI-2011

  4. Plasma Wall Interaction: Heat flux of about 10MW/m2 DSMF : Dernière surface magnétique fermée Divertor Limiteur (Last Closed Magnetic Surface) SOL : Scrape off layer T ore S upra ( TS ) Cadarache (France) J oint E uropean T orus ( JET ) Culham (UK) Heat flux of about 10MW/m 2 Heat flux intercepted by the Plasma Facing Component JL. Gardarein, J. Gaspar 4 METTI-2011

  5. Divertor de JET JET Divertor lignes de champ magnétiques lignes de champ magnétiques JET : Diagnostics and Components � Resolution ~ 8-10mm -1.3 -1.3 -1.4 -1.4 � Spectral Range: [3-5 µm] côté côté côté côté lignes de champ magnétiques lignes de champ magnétiques extérieur extérieur intérieur intérieur Z(m) Z(m) -1.5 -1.5 -1.3 -1.3 � F acquisition = 50 Hz � Type K -1.6 -1.6 -1.4 -1.4 TC TC TC TC côté côté côté côté � Observation of each Divertor’Side extérieur extérieur intérieur intérieur � F acq = 20Hz Z(m) Z(m) -1.7 -1.7 -1.5 -1.5 -1.8 -1.8 -1.6 -1.6 TC TC TC TC 2.4 2.4 2.6 2.6 2.8 2.8 3.0 3.0 -1.7 -1.7 r(m) r(m) -1.8 -1.8 -1.8 -1.8 2.4 2.4 2.6 2.6 2.8 2.8 3.0 3.0 ����� ����� ����� ����� r(m) r(m) 300 ���� ° �� 200 ����� ����� ����� ����� 100 [Gautier, EPS 1997] JL. Gardarein, J. Gaspar 5 METTI-2011

  6. Example of Experimental Temperatures x time (s) ( ° C) IR data T T ( TC (1 cm) time (s) 100 200 300 400 500 JL. Gardarein, J. Gaspar 6 METTI-2011

  7. Objectives : Heat flux computation on the plasma facing components Why ? • Critical Heat Flux and temperature of the PFC (10 MW/m², 1200 ° ° ° ° C) - Components destruction - Water leak in water-cooled machines - Water leak in water-cooled machines • Better understanding of the plasma physic. Problem • Is the plasma component perfectly known ? - Dimensions - Thermal properties JL. Gardarein, J. Gaspar 7 METTI-2011

  8. Problems • IR data: - Direct computation (surface temperature measurement) - Unknown Thermal Properties • TC data: - Spatial resolution • TC data: - Spatial resolution - Inverse Problem We have to use the thermocouple data => Solve an inverse Problem JL. Gardarein, J. Gaspar 8 METTI-2011

  9. A simplified version of our problem : 1D, Linear,Semi-Infinite Wall z k = 1 W/mK Cp = 1000 J/kg.m 3 ρ = 2500 kg/m 3 Direct Problem Direct Problem It’s possible to have the temperature field T(z,t) using : Temperature • Numerical Simulation + • Analytic Solution Noise • Semi-Analytic Solution JL. Gardarein, J. Gaspar 9 METTI-2011

  10. Knowing the thermal properties, is it possible to estimate the heat flux with a temperature measurement ? z k = 1 W/mK Cp = 1000 J/kg.m 3 + ρ = 2500 kg/m 3 e Inverse Problem => Q(t) ??? JL. Gardarein, J. Gaspar 10 METTI-2011

  11. Convolution / Deconvolution Theory of the Linear System s(t) e(t) Linear Syst. OUTPUT INPUT t ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ = = = = + + + + ⊗ ⊗ ⊗ ⊗ = = = = + + + + τ τ − − − − τ τ τ τ s s t t = = = = s s t t + + + + e e t t ⊗ ⊗ ⊗ ⊗ i i t t = = = = s s t t + + + + e e i i t t − − − − d d ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) 0 0 0 0 0 q(t) ? T(t) i(t) = Impulse response of the System δ ( t ) i(t) Linear Syst. t z JL. Gardarein, J. Gaspar 11 METTI-2011

  12. Convolution / Deconvolution • Duhamel’Theorem: t ∫ ∫ ∫ ∫ T t − − − − T = = = = Q t ⊗ ⊗ ⊗ ⊗ i t = = = = Q τ i t − − − − τ d τ ( ) ( ) ( ) ( ) ( ) 0 0 • Step Response: H ( t ) u ( t ) ∂ − τ − + − − u t u F f u F f ( ) ( 1 ) ( ) − τ = ≈ i t t ( ) ∂ t ∂ ∆ ∆ τ τ t u(t) = Step Response of the System (response to the Heaviside Function) System • Discretization: F = Number of step time F F ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∆ T = = = = T − − − − T = = = = u F − − − − f + + + + − − − − u F − − − − f q f = = = = ∆ u q f ( ( 1 ) ( )) ( ) ( ) F F F − − − − f 0 = = = = f = = f = = 1 1 12 JL. Gardarein, J. Gaspar METTI-2011

  13. F ∑ ∑ ∑ ∑ ∆ T = = = = ∆ u q f ( ) F F − − − − f F = Number of step time = = f = = 1 ∆ = = + + − − ≤ ≤ ≤ ≤ − − u k = = u k + + − − u k ≤ ≤ k ≤ ≤ F − − ∆ ∆  T   u   q  � � � ( 1 ) ( ) 0 1 0 0 1 0 1       ∆ T ∆ u ∆ u q � � � 0       2 1 0 2       � � � � � . . 0 − − − − = = = = ∆ T T q u F =       . 1 0 1 0 � � � � � � � .       T − − − − T = = = = q ∆ u + + + + q ∆ u       � � � � � � � .       2 0 1 1 2 0 ∆ ∆ ∆ ∆ T u u u q       � � − − − − = = = = ∆ + + + + ∆ + + + + ∆    .    T T q u q u q u F F − F − F 1 2 0 3 0 1 2 2 1 3 0 . Convolution × × � T � T . . = = Q Q X X − − = = ∆ + + ∆ + + ∆ + + + + ∆ T − − T = = q u + + q u + + q u + + + + q u ....... F F − − − − F − − − − F − − − − F 0 1 1 2 2 3 3 0 The matrix X can be inverted if X is well conditioned Deconvolution = = = = − − − − � T 1 If K(X) is low => X is well conditioned Q X . = − K X X X 1 ( ) If K(X) >> 1 => X is ill conditioned JL. Gardarein, J. Gaspar 13 METTI-2011

  14. z k = 1 W/mK Cp = 1000 J/kg.m 3 + ρ = 2500 kg/m 3 e • Step response computation: analytical solution         τ π     q   − x   x   x       2 ² τ = = = = − − − − − − −     x     erfc     � T         0     ( , ) exp ατ ατ π ατ b                   4 2     2   • The temperatures are produced with a FEM code We can solve this problem with Excel or Matlab JL. Gardarein, J. Gaspar 14 METTI-2011

  15. Deconvolution of the temperature at z=5mm: Application with Excel and Matlab JL. Gardarein, J. Gaspar 15 METTI-2011

  16. − = • Why doesn’t it work ? Q X � T 1 . => The matrix is ill conditioned because the problem is ill posed => The solution doesn’t respect the Stability condition: Q is very sensitive to measurement errors contained in deltaT. • How to find a solution ? => Need to use a regularization procedure => Regularization with a penalisation => We choose the Tikhonov operator JL. Gardarein, J. Gaspar 16 METTI-2011

  17. ~ 2 • Without regularization, the function to minimize is: γ = = = = − − − − � T J X R X Q ( , , ) . • With regularization, the new J is: J is the function to minimise ~ ~ 2 γ = = − − + + γ = = − − + + � T J ( X , R , ) X . Q I . Q R is the regularization operator γ is the regularization parameter ~ ~ Q Q • In our case, we want to limit the norm of , so R=I, this is a 0 order regularization. • To minimise J is equivalent to have the following expression of Q ( ( ( ( ) ) ) ) ~ − − − − 1 = = = = t + + + + γ t t I I � T Q X X X . ~ • One can note that is not the exact heat flux but an estimated Q heat flux; it is a biased value of Q JL. Gardarein, J. Gaspar 17 METTI-2011

  18. How to choose γ ? => γ is chosen to have the best compromise between an exact solution and a stable solution ~ − � T − → → − − → → => Exact solution means that X . Q 0 ~ → => Stable means that → → → Q min JL. Gardarein, J. Gaspar 18 METTI-2011

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend