semi blind deconvolution in 4pi microscopy
play

Semi-blind deconvolution in 4Pi-microscopy Robert St uck Institute - PowerPoint PPT Presentation

Semi-blind deconvolution in 4Pi-microscopy Semi-blind deconvolution in 4Pi-microscopy Robert St uck Institute for numerical and applied mathematics University of G ottingen 24.07.2009 Semi-blind deconvolution in 4Pi-microscopy outline


  1. Semi-blind deconvolution in 4Pi-microscopy Semi-blind deconvolution in 4Pi-microscopy Robert St¨ uck Institute for numerical and applied mathematics University of G¨ ottingen 24.07.2009

  2. Semi-blind deconvolution in 4Pi-microscopy outline introduction 4Pi-microscopy the unknown phase shift the iteratively regularized Gauß Newton method (IRGNM) the method convergence poisson noise measurements and reconstructions

  3. Semi-blind deconvolution in 4Pi-microscopy introduction outline introduction 4Pi-microscopy the unknown phase shift the iteratively regularized Gauß Newton method (IRGNM) the method convergence poisson noise measurements and reconstructions

  4. Semi-blind deconvolution in 4Pi-microscopy introduction 4Pi-microscopy confocal fluorescence microscopy the principle ◮ focused light excites fluorescence markers in the object ◮ the markers emit photons which are detected ◮ optical scanning microscopy advantages ◮ higher resolution compared to other optical microscopes ◮ imaging of 3-dimensional objects possible ◮ imaging of living objects possible

  5. Semi-blind deconvolution in 4Pi-microscopy introduction 4Pi-microscopy 4Pi-microscopy the principle ◮ confocal fluorescence microscopy ◮ interference of two laser beams in the focus ◮ interference of the objects photons in the detector S.W. Hell, E.H.K. Stelzer, J. Opt. Soc. Am. A Vol. 9, Nr: 12, 1992 → less illuminated volume and thus higher resolution 4Pi psf 2 point object 4Pi data

  6. Semi-blind deconvolution in 4Pi-microscopy introduction 4Pi-microscopy microtubular network in a PtK-2 cell M.C. Lang, T. Staudt, J. Engelhardt, S.W. Hell, New Journal of Physics 10(2008)

  7. Semi-blind deconvolution in 4Pi-microscopy introduction the unknown phase shift the influence of a varying refractive index ◮ the 4Pi-psf: p ( ˜ x ) cos γ ( γ ˜ x , φ ( x )) ≈ I env ( ˜ z + φ ( x )) , γ = 2 , 4 for one and two photon excitation respectively φ = π φ = π φ = 0 4 2 ◮ leads to bad image recovery, namely side lobes if linear deconvolution is applied

  8. Semi-blind deconvolution in 4Pi-microscopy introduction the unknown phase shift mathematical formulation of the imaging process ◮ The process of taking the image can be described by a quasi-convolution with a position-dependent psf � E ( g δ ( x )) = p ( y − x , φ ( x )) f ( y ) d y . Ω g δ : noisy data φ : phase shift p : psf f : object ◮ define the imaging operator � � � f F := p ( y − x , φ ( x )) f ( y ) d y φ Ω � f � δ ◮ the task now is: find such that φ � � † � � f � δ � f � f � † � � � g − g δ � � � < δ. � � − � is small, with F = g , � � φ φ φ �

  9. Semi-blind deconvolution in 4Pi-microscopy the iteratively regularized Gauß Newton method (IRGNM) outline introduction 4Pi-microscopy the unknown phase shift the iteratively regularized Gauß Newton method (IRGNM) the method convergence poisson noise measurements and reconstructions

  10. Semi-blind deconvolution in 4Pi-microscopy the iteratively regularized Gauß Newton method (IRGNM) the method the setting Let X , Y be Hilbert spaces, D ( F ) ⊂ X open, and F : D ( F ) → Y continuously Fr´ echet differentiable. Given the (nonlinear) operator equation F ( x ) = g with solution x † ∈ D ( F ). � � g − g δ � Find an approximation to x † for right hand side g δ , with � < δ .

  11. Semi-blind deconvolution in 4Pi-microscopy the iteratively regularized Gauß Newton method (IRGNM) the method the IRGN method Find a regularized solution to the linearized equation F ′ [ x n ] h n = g δ − F ( x n ) , �� � 2 + α n � h + x n − x 0 � 2 � � F ′ [ x n ]( h ) + F ( x n ) − g δ � h n = argmin h ∈ X then update the iterate solution and the regularization parameter α n +1 = α n x n +1 = x n + h n and e.g. 2 . A. B. Bakushinskii, Comput. Maths Math. Phys. 32 1353-9, 1992

  12. Semi-blind deconvolution in 4Pi-microscopy the iteratively regularized Gauß Newton method (IRGNM) the method IRGNM for 4Pi-microscopy ◮ the imaging operator F : L 2 (Ω) × H 2 (Ω) → L 2 (Ω) � � � f F := p ( y − x , φ ( x )) f ( y ) d y φ Ω has the Fr´ echet derivative " # „ h f f « Z  p ( y − x , φ ( x )) h f ( y ) + ∂ p ff F ′ ( x ) = ∂φ ( y − x , φ ( x )) f ( y ) h φ ( x ) dy φ h φ Ω ◮ to enhance the reconstruction a constraint has to be added C : convex set defined by the positivity of the object f ≥ 0. „‚ 2 « ‚ F ′ [ x n ]( x ) − F ′ [ x n ]( x n ) + F ( x n ) − g δ ‚ + α n � x n +1 − x 0 � 2 x n +1 = argmin ‚ ‚ ‚ x ∈C

  13. Semi-blind deconvolution in 4Pi-microscopy the iteratively regularized Gauß Newton method (IRGNM) convergence a recursive error estimate ◮ Definitions: T := F ′ [ x † T n := F ′ [ x n ] , C ] (1) ◮ � 2 + α n � x − x 0 � 2 � � T n ( x n ) − F ( x n ) + g δ �� J α n ( x ) = � T n ( x ) − � � 2 + α n � x − x 0 � 2 � T n ( x − x † C ) − r n ( x † � � = C − x n ) − ǫ (2) � with F ( x † g δ = C ) + ǫ with � ǫ � ≤ δ (3) F ( x † F ( x n ) + T n ( x † C − x n ) + r n ( x † C ) = C − x n ) r n ( x † C − x n ) : Taylor remainder .

  14. Semi-blind deconvolution in 4Pi-microscopy the iteratively regularized Gauß Newton method (IRGNM) convergence a recursive error estimate � � � � � x n +1 − x † � x ref − x † � � � � ≤ � x n +1 − x ref , n � + � x ref , n − x ref � + � (4) C � C � � 2 + α n � x − x 0 � 2 (5) � T n ( x − x † C ) − r n ( x † � � x n +1 := argmin C − x n ) − ǫ � x ∈C � � 2 � T n ( x − x † + α n � x − x 0 � 2 � � x ref , n := argmin C ) (6) � x ∈C � � 2 + α n � x − x 0 � 2 � � T ( x − x † � x ref := argmin C ) (7) � x ∈C

  15. Semi-blind deconvolution in 4Pi-microscopy the iteratively regularized Gauß Newton method (IRGNM) convergence Lemma Lemma Let X , Y be Hilbert spaces and T 1 , T 2 : X → Y bounded, linear operators and let C ⊂ X be a closed and convex set. Furthermore let ˜ x ∈ C and x 1 , x 2 ∈ C be the minimizers of the Tikhonov functionals corresponding to T 1 and T 2 with respect to the constraint to the set C : x ) � 2 + α � x − x 0 � 2 , J i ( x ) := � T i ( x − ˜ x i := argmin J i ( x ) , i ∈ { 1 , 2 } , x ∈C with α > 0 . Moreover let the source condition x = P C ( T ∗ ˜ 2 ω + x 0 ) , � ω � ≤ ρ hold for some ω ∈ Y and ρ > 0 . Then the distance of the minimizers is bounded by: √ � x 1 − x 2 � ≤ 2 ρ � T 1 − T 2 � .

  16. Semi-blind deconvolution in 4Pi-microscopy the iteratively regularized Gauß Newton method (IRGNM) convergence a recursive error estimate Assumptions: ◮ source condition: For some ω ∈ Y and ρ > 0 let x † C = P C ( T ∗ ω + x 0 ) , � ω � ≤ ρ. (A1) ◮ Lipschitz condition: Let � F ′ [ x ] − F ′ [ y ] � ≤ L � x − y � for some L > 0 and for all x , y ∈ D ( F ). (A2) Lemma If the assumptions (A1),(A2) are satisfied and x n is well defined, the recursive error estimate √ + √ α n ρ L δ � e n � 2 + � e n +1 � ≤ 2 L ρ � e n � + (8) 2 √ α n √ α n � � � x n − x † � � holds. ( � e n � := � ) C

  17. Semi-blind deconvolution in 4Pi-microscopy the iteratively regularized Gauß Newton method (IRGNM) convergence convergence result Theorem (Hohage, St¨ uck) Let the assumptions (A1),(A2) be satisfied and assume that ρ is sufficiently small and α n 1 ≤ ≤ r , n →∞ α n = 0 , lim α n > 0 α n +1 with α 0 ≤ 1 and r > 1 . Then one obtains ◮ convergence for exact data: Let δ = 0 � � 1 � x n − x † � � � = O ( α n ) , 2 n → ∞ C ◮ If the stopping index N is chosen such that α N < ηδ ≤ α n , 0 ≤ n < N, with η sufficiently large. Then one obtains convergence with respect to the noise level: � � 1 � x N − x † � � 2 ) , � = O ( δ δ → 0 C

  18. Semi-blind deconvolution in 4Pi-microscopy the iteratively regularized Gauß Newton method (IRGNM) poisson noise incorporation of the Poisson distribution i of the data g δ ∈ R n are drawn from ◮ The Cartesian components g δ independent Poisson distributed random variables G i with mean g i , ( g i ) g δ i.e. P g ( G = g δ ) = � n i i ! e − g i i =1 g δ ◮ Log-likelihood data misfit functional: l ( g ) := − ln P g ( G = g δ ) = � n i =1 g i − g δ i ln g i + c , where c is independent of g . ◮ Taylor expansion of l ( g ) = l ( g δ )+( ∇ l )( g δ ) ( g − g δ )+ 1 2 ( g − g δ ) T H ( g δ )( g − g δ )+ O (( g − g δ ) . 3 ), � �� � 0 with ( ∇ l ( g )) i = 1 − g δ g i and H ( g ) i , j = g δ i i δ i , j i g 2 ◮ This leads to the following weighted l 2 norm in the data space Y : Y = � n � g − g δ � 2 2( g δ ) i ( g − g δ ) 2 1 i =1 i

  19. Semi-blind deconvolution in 4Pi-microscopy measurements and reconstructions outline introduction 4Pi-microscopy the unknown phase shift the iteratively regularized Gauß Newton method (IRGNM) the method convergence poisson noise measurements and reconstructions

  20. Semi-blind deconvolution in 4Pi-microscopy measurements and reconstructions

  21. Semi-blind deconvolution in 4Pi-microscopy measurements and reconstructions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend