cmos sensor for the cold and tiny
play

CMOS Sensor for the Cold and Tiny Yuan Mei Lawrence Berkeley - PowerPoint PPT Presentation

CMOS Sensor for the Cold and Tiny Yuan Mei Lawrence Berkeley National Laboratory TPC is wonderful Signal extraction remains a challenge Physics Today 31(10), 46 (1978) 2 CCD, W. Boyle & G. Smith @ Bell Labs, 1969


  1. CMOS Sensor for the Cold and Tiny Yuan Mei Lawrence Berkeley National Laboratory

  2. TPC is wonderful Signal extraction remains a challenge Physics Today 31(10), 46 (1978) 2 CCD, W. Boyle & G. Smith @ Bell Labs, 1969 https://www.visiononline.org/blog-article.cfm/CCD-vs-CMOS-Image-Sensors-Which-are-Better/82

  3. TPC signal extraction PMT S2 dt E e − S1 γ , n, χ cathode PMT XENON, LUX, LZ, etc. S.E. Vahsen et al. http://arxiv.org/abs/1110.3401 • µ-PIC (Micro Pixel Chamber) • Liquid Xenon TPC • D 3 , InGrid etc. • Printed Circuit Board technology • Time Projection Chamber • Charge multiplication stage • 400µm pitch • Wire and/or light readout • Non-specific ASIC readout • Some electron gain in gas • mm~cm spatial resolution • FE-I3/-I4 • Difficult for readout and scale-up • TimePix 3

  4. Readout? 4

  5. Avalanche gain? • MicroMegas • GEM • µ-PIC (Micro Pixel Chamber) • Micromesh placed (very) • Array of micro-holes in • Printed Circuit Board technology close to readout PCB thin foils with conductor cladding on both sides 5

  6. • Catch charge as early as possible, convert to digital information immediately • Low noise • Full 3D information • Truly (massively) pixelated (2D) • Adequate timing (waveform digitization) • Affordable

  7. Topmetal CMOS direct charge sensor • XFAB XH035 Process • ~80µm pixel size Charge track TM GR GR Source Drain Source Drain Gate Gate n+ n+ p+ p+ P-Well N-Well NMOS CAP PMOS p-substrate Topmetal-I Topmetal-II - • Charge sensitive amplifier, <15e- noise • Direct voltage readout • Clock-less, frame-less logic hits readout • High analog bandwidth Column Bus FB_RST Pull Up Topmetal arXiv:1407.3712 From PFO i-9 K + - > : 9 < EN AVDD Pixel Addr EN FB_RST PFI SPDT AddrEN M: M> RESET U<U U9U PFO Flag Reset Node FB_VREF Priority Logic V reset Md Mf To PFI im9 C f NIMA 810, 144 CMP_VREF COL_RST Topmetal CSA Vcc COL_READ -bit DAC C R & Gring CSA_VREF CMP I bias AVDD CLK TIME<9:<> ADDR<K:<> Ms9 AVDD :uA Pixel Buffer A_OUT Ms: ROW_SEL COL_SEL Output I COL Row Col Bu ff er Ma9 Ma: AVDD +:9 7

  8. Topmetal-II - seeing alpha (ion) tracks in air Δ t = 3.3ms x [mm] µ =10.47 [mV] Raw waveform 0.84 0 1 2 3 4 5 σ =0.42 [mV], ENC=13.9 e − Trapezoidal shaper 70 t 0 t 1 0.838 60 5 0.836 50 4 y [pixel] y [mm] 40 0.834 10 mV step 3 injection U [V] 30 0.832 2 20 1 0.83 10 0 0 0.828 Baseline distribution t 2 t 3 0.826 µ =827.6 [mV] σ =1.2 [mV], ENC=39.5 e − 0.824 5 6 7 8 9 10 11 12 13 14 t [ms] Column Bus FB_RST Pull Up From PFO i-9 EN K + - > : 9 < AVDD Pixel Addr EN FB_RST PFI SPDT M: M> AddrEN U<U U9U PFO Flag Reset FB_VREF Priority Logic Md Mf To PFI im9 C f CMP_VREF COL_RST Topmetal CSA COL_READ -bit DAC & Gring CSA_VREF CMP 10 AVDD CLK TIME<9:<> ADDR<K:<> t 4 t 5 Ms9 AVDD :uA 8 Buffer A_OUT Ms: ROW_SEL COL_SEL I COL Ma9 Ma: 6 AVDD +:9 [mV] 4 241 Am 2 0 − 2 ~ e − E 5 cm 0 10 20 30 40 50 60 70 e − x [pixel] e − NIMA 810, 144, 2016 Topmetal

  9. Electron-track Compton Imaging • Medical Imaging • Gamma (X-ray) Astronomy http://www-cr.scphys.kyoto-u.ac.jp/research/MeV-gamma/wiki/wiki.cgi?page=Top_en Ne(90%)+DME(10%) @ 80kPa, 55 Fe events (5.9keV X-ray), GEM on Topmetal-II - 2.5 x 2.5 mm field of view 9

  10. CMOS charge sensor array for 0 νββ Readout No electron multiplication! Plane 1 Electric field - Readout Plane 2 - + - + - + Charge track + TM GR GR Source Drain Source Drain Gate Gate n+ n+ p+ p+ P-Well N-Well NMOS CAP PMOS p-substrate • Eliminate charge multiplication Focusing Electrode • Focusing electrode 100% coll. eff. • Direct charge collection in X-Y • In-sensor digitization • Inter-sensor network for digital data PCB transmission CMOS Sensor 10

  11. Sensor array 5cm Focusing Electrode PCB CMOS Sensor python program generated PCB, parametrized

  12. CMOS works in the cold NMOS IV scan 0.00012 0.00012 0.1K 77K 0.0001 0.0001 300K 8 × 10 − 5 8 × 10 − 5 6 × 10 − 5 6 × 10 − 5 4 × 10 − 5 4 × 10 − 5 I ds [A] 2 × 10 − 5 2 × 10 − 5 0 0 − 2 × 10 − 5 − 2 × 10 − 5 − 4 × 10 − 5 − 4 × 10 − 5 − 6 × 10 − 5 − 6 × 10 − 5 − 0.2 − 0.2 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1 1 1.2 1.2 1.4 1.4 V ds [V]

  13. State-of-the-art cold electronics 77K – LArPix, Q-Pix etc. Amplifier%with%SelfEtriggered%Digi=za=on%and%Readout% Digital%Control $ RESET FrontEend%amplifier $ Standard%SAR%Digi=zer $ C CONVERT Digital/ SERIAL_OUT DATA[5:0] Qin 6:b/ADC CSA Control (from/detector) HIT STROBE THRESHOLD[5:0] 6:b/DAC SelfEtriggering%Discriminator $ 4K – FPGA etc. Driven by quantum computing needs Prime waveform Readout carrier Digital Waveform dc + 300 K generator 100110100 001100010 Programming Power Clock Dilution refrigerator Prime-line bus 4 K ADC Logic Multi- Address-line bus channel DAC Coupler 20 mK Multi-plexing Switch matrix Pulsing Readout Biasing Qubits http://aip.scitation.org/doi/pdf/10.1063/1.4939094 http://aip.scitation.org/doi/pdf/10.1063/1.4979611 14 PhysRevApplied.3.024010

  14. CMOS @ <4K Conventional CMOS designed to work 55nm CMOS devices proven to function at <4K temperature. down to ~10mK Low-noise Transimpedance Amplifier (TIA) Drain − Body IV scan, Floating G,S NMOS1 10~20mK replaces SQUID NMOS1 60.8K NMOS1 298K PMOS2 10~20mK 2 × 10 − 7 2 × 10 − 7 PMOS2 59.1K PMOS2 298K 1 × 10 − 7 1 × 10 − 7 I DB [A] 0 0 − 1 × 10 − 7 − 1 × 10 − 7 − 2 × 10 − 7 − 2 × 10 − 7 TIA − 8 − 8 − 6 − 6 − 4 − 4 − 2 − 2 0 0 2 2 4 4 6 6 8 8 T p T s V DB [V] NMOS IV scan V o A 0.00012 0.00012 0.1K 77K 0.0001 0.0001 300K R f 8 × 10 − 5 8 × 10 − 5 6 × 10 − 5 6 × 10 − 5 4 × 10 − 5 4 × 10 − 5 I ds [A] C f 2 × 10 − 5 2 × 10 − 5 R sh R TES 0 0 − 2 × 10 − 5 − 2 × 10 − 5 − 4 × 10 − 5 − 4 × 10 − 5 − 6 × 10 − 5 − 6 × 10 − 5 − 0.2 − 0.2 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1 1 1.2 1.2 1.4 1.4 15 V ds [V]

  15. Interfacing quantum sensors NTD in CUORE NTD Ge Thermistor Ds Thermistor Heat bath ~10 mK (NTD-Ge) (Copper) Absorber Crystal (TeO 2 ) Energy release Thermal coupling (PTFE) Si Heater (ref. TES in CUPID 300 K s Bias Out R fb = 10 k Ω L = 6 nH SQUID R sh = 20 m Ω 600 mK R TES = 0.5 Ω 10 mK + Superconducting Qubits + CMB TES array 16

  16. VDD U5 U6 W=0.5u L=10u W=1.2u L=10u Vout ??? ??? U8 U4 Vin+ ??? W=0.22u L=10u W=10u L=0.18u M=1 Vgn2 ??? Vouts U1D U3 NM W=1.2u L=1.2u I2 U1 R1 ??? NM 100Meg W=0.5u L=1.2u 10n .5u

  17. Stay Tuned! Contact Yuan Mei <ymei@lbl.gov>

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend