class ab single stage opamp for low power switched
play

Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor - PowerPoint PPT Presentation

IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 1/27 Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor Circuits S. Sutula 1 , M. Dei 1 , L. Ters 1,2 and F. Serra-Graells 1,2


  1. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 1/27 Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor Circuits S. Sutula 1 , M. Dei 1 , L. Terés 1,2 and F. Serra-Graells 1,2 stepan.sutula@imb-cnm.csic.es 1 Integrated Circuits and Systems (ICAS) Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC) 2 Dept. of Microelectronics and Electronic Systems (DEMISE) Universitat Autònoma de Barcelona (UAB) Lisbon, May 2015 IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  2. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 2/27 1 Introduction 2 Class-AB Architecture 3 Process-Independent Circuits 4 Practical Design 5 Experimental Results 6 Conclusions IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  3. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 3/27 1 Introduction 2 Class-AB Architecture 3 Process-Independent Circuits 4 Practical Design 5 Experimental Results 6 Conclusions IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  4. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 4/27 Low-Power Switched-Capacitor Design Low-Voltage Approach Low-Current Approach ◮ Bulk-driven OpAmps ◮ Telescopic diff. pairs with LCMFB ◮ Internal supply multipliers ◮ Dynamic biasing by RC bias ◮ Inverter-based OpAmps tees ◮ Switched OpAmps ◮ Hybrid-Class-A/AB ◮ Adaptive biasing ◮ Nominal-voltage downscaling ◮ Higher power savings ◭ Moderate power savings ◭ Parameter-variation sensitivity IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  5. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 5/27 1 Introduction 2 Class-AB Architecture 3 Process-Independent Circuits 4 Practical Design 5 Experimental Results 6 Conclusions IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  6. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 6/27 Single-Stage Class-AB OpAmp ◮ Two complementary diff. pairs ◮ Dynamic current mirrors ◮ Separate Class-AB control ◮ Partial positive feedback ◮ CMFB control through the NMOS-pair tail ◮ Gain improvement by the output cascode transistors ◮ No need for the Miller compensation capacitors ◮ High-peak Class-AB currents only in the output transistors IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  7. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 7/27 Single-Stage Class-AB OpAmp ◮ Supposing all boxed devices operating in strong inversion: AB D . = A + B � � � I inp n β I onp = + V cp D A 2 ◮ Desired Class-AB behavior:  I outp ≡ 0 V cp ≡ V xp I onp ≡ I inp  � I onp ≪ I inp I outp �≡ 0 V cp �≡ V xp  I onp ≫ I inp IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  8. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 8/27 1 Introduction 2 Class-AB Architecture 3 Process-Independent Circuits 4 Practical Design 5 Experimental Results 6 Conclusions IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  9. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 9/27 Type I � ��� � � � ◮ Cross-coupled pair � � I inp I inp I onp I onp I inp = B I onn 2 − + − D D A D A for the Class-AB �� � � � � I inp � operation 2 I tail I onp I inn I onn +C − − + + D D D A A �� � � � I inp � I onp I inn I onn ◮ Crossing transistor as − − + D D A A a Class-AB limiter ◮ Independence from the technology parameters ◭ Need for an extra bias reference IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  10. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 10/27 Type I with Class-AB Smoother ◮ Low-level common-mode current injection ◮ Instability prevention under a high Class-AB modulation ◭ Need for extra current sources IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  11. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 11/27 Type II � � � � � I onp I inp = I onn 2 B +C D D ◮ Independence from the technology parameters �� ���� � � � I inp I inp I onp I onp − (B+C) − − D A D A ◮ Auto-biased Class-AB limiter 1+ A D . = A(B+C) I max ≃ B+C I tail > I tail C A+B+C A 1+ ◮ Self-latch prevention ◮ Simple sizing procedure IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  12. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 12/27 1 Introduction 2 Class-AB Architecture 3 Process-Independent Circuits 4 Practical Design 5 Experimental Results 6 Conclusions IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  13. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 13/27 Type-II OpAmp Using a 0.18-µm CMOS Technology ◮ Circuit design based on the inversion-coefficient ◮ Reduced set of transistor matching groups ◮ Minimum-channel-length devices can be used ◮ Bias for cascode transistors optimized for maximum output full scale ◮ 1.8-V nominal voltage supply of the CMOS technology IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  14. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 14/27 Simulation Results 10 ◮ DC transfer curve Analytical Numerical 8 ◮ Analytical versus numerical behavior 6 [mA] I onn I onp ◮ Class-AB achieves 4 about × 4 bias current 2 0 − 1 − 0.5 0 0.5 1 I inp − I inn [ mA] IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  15. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 15/27 Simulation Results 0 ◮ Frequency Phase 80 response Gain 70 ◮ 200-pF load Differential Gain [dB] 60 − 60 capacitance 50 Phase [°] 40 72 dB 30 − 120 20 50 ° 10 0 − 180 10 3 10 4 10 5 10 6 10 7 10 8 10 9 Frequency [Hz] IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  16. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 16/27 Simulation Results ◮ Step response for several load conditions 2 Differential Output Voltage [V] 650 µF at 1 Hz, 650 nF at 1 kHz 650 pF at 1 MHz 1 0 − 1 0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2 Time × Input Frequency [-] ◮ Stability robustness IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  17. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 17/27 Integration ◮ Standard 0.18-µm 1P6M CMOS technology ◮ 0.07-mm 2 area ◮ Additional CMFB averaging capacitors for SC applications IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  18. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 18/27 Integration ◮ Standard 0.18-µm 1P6M CMOS technology ◮ 0.07-mm 2 area ◮ Additional CMFB averaging capacitors for SC applications IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  19. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 19/27 1 Introduction 2 Class-AB Architecture 3 Process-Independent Circuits 4 Practical Design 5 Experimental Results 6 Conclusions IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  20. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 20/27 Step Response ] Simulated V 1 Di ff . Output Voltage [ Measured 0 − 1 I supply Current [mA] 10 5 I opp I opn 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 2 1 . 4 1 . 6 1 . 8 0 1 2 Time [ms] IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  21. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 21/27 Full-Scale Evaluation 2 Differential Output Voltage [V] Ideal Simulated 1 Measured 0 − 1 − 2 0 20 40 60 80 100 120 140 160 180 200 Time [ms] ◮ 3.3-V pp differential full scale at 1.8-V voltage supply IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  22. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 22/27 Figure-of-Merit Comparison This Parameter [1] [2] [3] [4] [5] Units work Technology 0.5 0.5 0.25 0.13 0.18 0.18 µm Supply 2 2 1.2 1.2 0.8 1.8 V DC gain 43 45 69 70 51 72 dB 80 25 4 5.5 8 200 pF C load GBW 0.725 11 165 35 0.057 86.5 MHz Phase margin 89.5 N/A 65 45 60 50 ° Slew rate, SR 89 20 329 19.5 0.14 74.1 V/µs Static power, P 0.12 0.04 5.8 0.11 0.0012 11.9 mW mm 2 Area 0.024 0.012 N/A 0.012 0.057 0.07 pF V 59.33 12.50 0.28 0.98 0.93 1.25 FOM µs µW � � pF FOM = SR · C load V µs µW P IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  23. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 23/27 1 Introduction 2 Class-AB Architecture 3 Process-Independent Circuits 4 Practical Design 5 Experimental Results 6 Conclusions IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

  24. IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 24/27 Conclusions ◮ New family of Class-AB OpAmps ◮ Single-stage topology ◮ No need for an internal frequency compensation ◮ Class-AB current peaks in the output transistors only ◮ Low sensitivity to the technology parameter variations ◮ Simple analytical design flow ◮ Successfully used in a 16-bit 100-kS/s ΔΣ ADC Thank you! IMB-CNM(CSIC) S. Sutula et al. DEMISE(UAB)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend