characterizing extremal limits
play

Characterizing extremal limits Oleg Pikhurko University of Warwick - PowerPoint PPT Presentation

Characterizing extremal limits Oleg Pikhurko University of Warwick ICERM, 11 February 2015 Rademacher Problem g ( n , m ) := min { # K 3 ( G ) : v ( G ) = n , e ( G ) = m } Mantel 1906, Turn41: max { m : g ( n , m ) = 0 } = n 2


  1. Characterizing extremal limits Oleg Pikhurko University of Warwick ICERM, 11 February 2015

  2. Rademacher Problem ◮ g ( n , m ) := min { # K 3 ( G ) : v ( G ) = n , e ( G ) = m } ◮ Mantel 1906, Turán’41: max { m : g ( n , m ) = 0 } = ⌊ n 2 4 ⌋ ◮ Rademacher’41: g ( n , ⌊ n 2 4 ⌋ + 1 ) = ⌊ n 2 ⌋

  3. Just Above the Turán Function os’55: m ≤ ⌊ n 2 ◮ Erd˝ 4 ⌋ + 3 os’62: m ≤ ⌊ n 2 ◮ Erd˝ 4 ⌋ + ε n os’55: Is g ( n , ⌊ n 2 4 ⌋ + q ) = q · ⌊ n ◮ Erd˝ 2 ⌋ for q < n / 2 ? ◮ K k , k + q edges versus K k + 1 , k − 1 + ( q + 1 ) edges ◮ Lovász-Simonovits’75: Yes ◮ Lovász-Simonovits’83: m ≤ ⌊ n 2 4 ⌋ + ε n 2

  4. Asymptotic Version g ( n , a ( n 2 ) ) ◮ g ( a ) := lim n →∞ ( n 3 ) ◮ Upper bound: K cn ,..., cn , ( 1 − tc ) n ◮ Moon-Moser’62,Nordhaus-Stewart’62 (Goodman’59): g ( a ) ≥ 2 a 2 − a ◮ Bollobás’76: better lower bound ◮ Fisher’89: g ( a ) for 1 2 ≤ a ≤ 2 3 ◮ Razborov’08: g ( a ) for all a ◮ No stability ◮ H a n : modify the last two parts of K cn ,..., cn , ( 1 − tc ) n ◮ P .-Razborov ≥ ’15: ∀ almost extremal G n is o ( n 2 ) -close to some H a n

  5. Possible Edge/Triangle Densities K 3 K 3 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 K 2 0.2 0.4 0.6 0.8 1.0 K 2 0.2 0.4 0.6 0.8 1.0 ◮ Upper bound: Kruskal’63, Katona’66

  6. Limit Object ◮ Subgraph density G [ random v ( F ) -set ] ∼ � � p ( F , G ) = Prob = F ◮ F 0 = { finite graphs } ◮ ( G n ) converges if v ( G n ) → ∞ and ∀ F ∈ F 0 ∃ lim n →∞ p ( F , G n ) =: φ ( F ) ◮ LIM = { all such φ } ⊆ [ 0 , 1 ] F 0 ◮ g ( a ) = inf { φ ( K 3 ) : φ ∈ LIM , φ ( K 2 ) = a }

  7. Razborov’s Flag Algebra A 0 ◮ φ ∈ LIM ⊆ [ 0 , 1 ] F 0 ◮ F 0 = { unlabeled graphs } ◮ R F 0 := { quantum graphs } = { � α i F i } ◮ Linearity: φ : R F 0 → R ◮ A 0 := R F 0 / � � linear relations that always hold ◮ φ ( F 1 ) φ ( F 2 ) = � c H φ ( H ) ◮ Define: F 1 · F 2 := � H c H H ◮ φ : A 0 → R is algebra homomorphism

  8. Positive Homomorphisms ◮ φ ∈ Hom ( A 0 , R ) is positive if ∀ F ∈ F 0 φ ( F ) ≥ 0 ◮ Hom + ( A 0 , R ) = { positive homomorphisms } ◮ Lovász-Szegedy’06, Razborov’07: LIM = Hom + ( A 0 , R ) ◮ ⊇ : Let φ ∈ Hom + ( A 0 , R ) ◮ � | F | = n φ ( F ) = 1 ◮ Distribution on F 0 n ◮ Prob [ random G n → φ ] = 1 ◮ φ ∈ LIM ◮ Write � α i F i ≥ 0 if ◮ ∀ φ ∈ Hom + ( A 0 , R ) � α i φ ( F i ) ≥ 0 lim inf � α i p ( F i , G n ) ≥ 0 ◮ Equivalently: ∀ ( G n )

  9. Limit version of the problem ◮ g ( a ) = min { φ ( K 3 ) : φ ∈ Hom + ( A 0 , R ) , φ ( K 2 ) = a } ◮ Characterise all extremal φ : { φ ∈ Hom + ( A 0 , R ) : φ ( K 3 ) = g ( φ ( K 2 )) } = ? ◮ Alternatively: work with graphons. E.g. g ( a ) = min { t ( K 3 , W ) : graphon W with t ( K 2 , W ) = a }

  10. Razborov’s Proof for a ∈ [ 1 2 , 2 3 ] ◮ h ( a ) = conjectured value ◮ Hom + ( A 0 , R ) ⊆ [ 0 , 1 ] F is closed ⇒ compact ◮ f ( φ ) := φ ( K 3 ) − h ( φ ( K 2 )) is continuous ◮ ∃ φ 0 that minimises f on { φ ∈ Hom + ( A 0 , R ) : 1 2 ≤ φ ( K 2 ) ≤ 2 3 } ◮ a := φ 0 ( K 2 ) � n ◮ c : e ( K cn , cn , ( 1 − 2 c ) n ) ≈ a � 2

  11. Goodman bound ◮ Goodman bound: K 3 − K 2 ( 2 K 2 − 1 ) ≥ 0 ◮ Cauchy-Schwarz: [ [ K 1 2 · K 1 2 ] ] 1 ≥ K 2 · K 2 6 ¯ ◮ [ [ K 1 2 · K 1 ] 1 = 1 2 K 3 + 1 2 K 2 − 1 P 3 ≤ 1 2 K 3 + 1 2 ] 2 K 2 ◮ Assume 1 2 < a < 2 3 ◮ Otherwise done by the Goodman bound ◮ h is differentiable at a

  12. At Most cn Triangles per Edge ◮ Pick G n → φ 0 ◮ Rate of growth: g ( n , m + 1 ) − g ( n , m ) ≈ cn ◮ ≈ cn triangles per new edge ◮ G n has � cn triangles on almost every edge ◮ Flag algebra statement φ E 0 ( K E 3 ) ≤ c a.s. ◮ Informal explanation: ◮ φ E 0 : Two random adjacent roots x 1 , x 2 in G n ◮ K E 3 : Density of rooted triangles

  13. Flag Algebra A E ◮ E := ( K 2 , 2 roots ) ◮ F E := { ( F , x 1 , x 2 ) : F ∈ F 0 , x 1 ∼ x 2 } ◮ p ( F , G ) : root-preserving induced density ◮ G n ∈ F E converges if ∀ F ∈ F E p E ( F , G n ) → φ E ( F ) ◮ φ E : R F E → R ◮ A E := � R F E / � trivial relations � , multiplication � ◮ Razborov’07: { limits φ E } = Hom + ( A E , R ) ◮ Random homomorphism φ E 0 ( K E 3 ) : ◮ G n → φ ◮ ( G n , [random x 1 ∼ x 2 ] ) ∈ M ( F E ) ◮ Weak limit

  14. Vertex Removal ◮ Remove x ∈ V ( G n ) : ◮ ∂ p ( K 2 , G n ) : ◮ Remove edges: − d ( x ) �� n � 2 � n ��� n − 1 ◮ Remove isolated x : × = 1 + 2 � n + ... 2 2 ◮ Total change: − K 1 � n + a 2 � 2 ( x ) / n + ... 2 � n ◮ ∂ p ( K 3 , G n ) = − K 1 + φ 0 ( K 3 ) 3 � 3 ( x ) / n + ... 3 ◮ Expect: ∂ p ( K 3 ) � h ′ ( a ) ∂ p ( K 2 ) ◮ Cloning x: signs change ◮ Approximate equality for almost all x ◮ Flag algebra statement: − 3 ! φ 1 0 ( K 1 − 2 φ 1 0 ( K 1 � � 3 ) + 3 φ 0 ( K 3 ) = 3 c 2 ) + 2 a a . s .

  15. Finishing line ◮ Recall: A.s. ◮ − 3 ! φ 1 0 ( K 1 � − 2 φ 1 0 ( K 1 � 3 ) + 3 φ 0 ( K 3 ) = 3 c 2 ) + 2 a 0 ( K E ◮ φ E 3 ) ≤ c ◮ Average? ◮ 0 = 0 � ◮ Slack � E ◮ Multiply by K 1 2 & P 3 and then average! ◮ Calculations give φ 0 ( K 3 ) ≥ 3 ac ( 2 a − 1 ) + φ 0 ( K 4 ) + 1 4 φ 0 ( K 1 , 3 ) 3 c + 3 a − 2 φ 0 ( K 3 ) ≥ h ( a ) � ◮ φ 0 ( K 4 ) ≥ 0 & φ 0 ( K 1 , 3 ) ≥ 0 ⇒

  16. Extremal Limits ◮ Extremal limit: limits of almost extremal graphs ◮ Equivalently: { φ ∈ Hom + ( A 0 , R ) : φ ( K 3 ) = g ( φ ( K 2 )) } ◮ P .-Razborov ≥ ’15: { extremal limits } = { limits of H a n ’s } ◮ Implies the discrete theorem ◮ Pick a counterexample ( G n ) ◮ Subsequence convergent to some φ ◮ H a n → φ ◮ δ � ( G n , H a n ) → 0 ◮ Overlay V ( G n ) = V ( H a n ) = V 1 ∪ · · · ∪ V t − 1 ∪ U ◮ G [ V i , V i ] almost complete ◮ G [ V i ] almost empty ◮ G [ U ] has o ( n 3 ) triangles

  17. Structure of Extremal φ 0 ◮ Assume φ 0 ( K 3 ) = h ( a ) ( = g ( a ) ) with 1 2 ≤ a ≤ 2 3 ◮ If a ∈ { 1 2 , 2 3 } : ◮ Goodman’s bound is sharp ◮ φ 0 (¯ P 3 ) = 0 ◮ Complete partite ◮ Cauchy-Schwarz ⇒ regular ◮ φ 0 is the balanced k -partite limit, done! � ◮ Suppose a ∈ ( 1 2 , 2 3 ) ◮ Density of K 4 and K 1 , 3 is 0 ◮ If φ 0 ( P 3 ) = 0, ◮ Complete partite ◮ K 4 -free ⇒ at most 3 parts ⇒ done! �

  18. Case 2: φ 0 ( P 3 ) > 0 ◮ Special graphs F 1 and F 2 : ◮ Claim: φ 0 ( F 1 ) = φ 0 ( F 2 ) = 0 ◮ Claim: Exist many P 3 ’s st ◮ | A | = Ω( n ) : vertices sending 3 edges to it ◮ | B | = Ω( n ) : vertices sending ≤ 2 edges to it ◮ Non-edge across → a copy of F 1 , F 2 , or K 1 , 3 ◮ G n [ A , B ] is almost complete ⇒ � ◮ K 4 -freeness + calculations

  19. Clique Minimisation Problem ◮ Open: Exact result for K 3 ◮ Nikiforov’11: Asymptotic solution for K 4 ◮ Reiher ≥ ’15: Asymptotic solution for K r ◮ Open: Structure & exact result

  20. General Graphs ◮ Colour critical: χ ( F ) = r + 1 & χ ( F − e ) = r ◮ Simonovits’68: ex ( n , F ) = ex ( n , K r + 1 ) , n ≥ n 0 ◮ Mubayi’10: Asymptotic for m ≤ ex ( n , F ) + ε F n ◮ P .-Yilma ≥ ’15: Asymptotic for m ≤ ex ( n , F ) + o ( n 2 ) ◮ Bipartite F ◮ Conjecture (Erd˝ os-Simonovits’82, Sidorenko’93): ◮ Random graphs are optimal ◮ ..., Conlon-Fox-Sudakov’10, Li-Szegedy ≥ ’15, Kim-Lee-Lee ≥ ’15, ... ◮ Forcing Conjecture (Li-Szegedy): F biparite non-tree ⇒ extremal graphons are constants

  21. Thank you!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend