character polynomials problem
play

Character Polynomials Problem From Stanleys Positivity Problems in - PowerPoint PPT Presentation

Character Polynomials Problem From Stanleys Positivity Problems in Algebraic Combinatorics Problem 12: Give a combinatorial interpretation of the row sums of the character table for S n (combinatorial proof of non-negativity)


  1. Character Polynomials

  2. Problem • From Stanley’s Positivity Problems in Algebraic Combinatorics • Problem 12: Give a combinatorial interpretation of the row sums of the character table for S n (combinatorial proof of non-negativity)

  3. Symmetric Group • S n = permutations of n things • Contains n ! elements • S 3 =permutations of {1,2,3} (123, 132, 213, 231, 312, 321) • Permutations can be represented with n × n matrices • Character: trace of a matrix representation • Character Table: table of all irreducible characters of a group

  4. Representations of S 3 • vertices of an equilateral triangle   0    1   1     3 3      2 2       3 2     1 1           2 2

  5. Representations of S 3 • vertices of an equilateral triangle • pick a permutation: 123  312   0    1   1     3 3      2 2       3 2     1 1           2 2

  6. Representations of S 3 • vertices of an equilateral triangle • pick a permutation: 123  312   0    3   1     3 3      2 2       2 1     1 1           2 2

  7. Representations of S 3 • 123  312 is 120 ° CW rotation   1 3    2 2     3 1       2 2  1 2  1 2   1 • Character = Trace =

  8. Character Table for S 3 1,1,1 2,1 3 3 1 1 1 2,1 2 0 -1 1,1,1 1 -1 1

  9. Character Table for S 4 1 4 2,1 2 2 2 3,1 4 1 1 1 1 1 3 1 -1 0 -1 2 0 2 -1 0 3 -1 -1 0 1 1 -1 1 1 -1

  10. Character Polynomials • compute characters without matrices • depend only on small parts of the cycle type • connections to Murnaghan-Nakayama rule, Schur functions

  11. Character Table for S 4 Sum 1 4 2,1 2 2 2 3,1 4 1 1 1 1 1 5 3 1 -1 0 -1 2 2 0 2 -1 0 3 2 3 -1 -1 0 1 1 1 -1 1 1 -1

  12. Character Polynomials Partition Polynomial 1 n a 1  1 n -1,1 n -2,2 n -2,1 2 n -3,3 n -3,2,1 n -3,1 3 n -4,1 4

  13. Character Table for S 4 1 4 2,1 2 2 2 3,1 4 1 1 1 1 1 3 1 -1 0 -1 2 0 2 -1 0 3 -1 -1 0 1 1 -1 1 1 -1

  14. Character Polynomials Partition Polynomial 1 n a 1  1 n -1,1 a 2  a 1  a 1 ( a 1  1) n -2,2 2  a 2  a 1  1  a 1 ( a 1  1) n -2,1 2 2 n -3,3 n -3,2,1 n -3,1 3 n -4,1 4

  15. Character Polynomials Partition Polynomial 1 n a 1  1 n -1,1 a 2  a 1  a 1 ( a 1  1) n -2,2 2  a 2  a 1  1  a 1 ( a 1  1) n -2,1 2 2 a 3  a 1 a 2  a 2  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2) n -3,3 2 6  a 3  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2)  a 1 n -3,2,1 3 a 3  a 1 a 2  a 2  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2) n -3,1 3  a 1  1 2 6 n -4,1 4

  16. Character Polynomials Partition Polynomial 1 n a 1  1 n -1,1 a 2  a 1  a 1 ( a 1  1) n -2,2 2  a 2  a 1  1  a 1 ( a 1  1) n -2,1 2 2 a 3  a 1 a 2  a 2  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2) n -3,3 2 6  a 3  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2)  a 1 n -3,2,1 3 a 3  a 1 a 2  a 2  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2) n -3,1 3  a 1  1 2 6 n -4,1 4   a a ( 1) a a ( 1)        2 2 2 2 a a a a a a a 4 1 3 1 3 1 2 2 2       a a ( 1)( a 2)( a 3) a a ( 1)( a 2) a a ( 1)     1 1 1 1 1 1 1 1 1 a 1 2 24 6 2

  17. Generating Functions and Row Sums 1 p ( n ) x n    1  x i n  0 i  1 1  1  x i  (1+ x + x 2 + x 3 + x 4 +···)(1+ x 2 + x 4 +···)(1+ x 3 + x 6 +···)(1+ x 4 + x 8 +···)+··· i  1 Can get x 4 from: 1. x 4 · 1 · 1 · 1  1,1,1,1 2. x · 1 · x 3 · 1  3,1 3. 1 · x 4 · 1 · 1  2,2 4. x 2 · x 2 · 1 · 1  2,1,1 5. 1 · 1 · 1 · x 4  4 • p (4)=5

  18. Example: n -1,1 a 1  1 Character Polynomial: 1 ux      2 2 3 3 1 ux u x u x  1  1      2 2 3 0 x 2 ux 3 u x   u 1 ux  1      2 3 0 2 3 x x x   1 u u x  1 u counts number of 1 s!

  19. Example: n -1,1   u (1  ux )  1  x (1  ux )  2  x    1 (1 ) u x   2 u (1 x )  u 1 1 p ( n ) x n    1  x i n  0 i  1  1 1 x 1         i i u 1 ux 1 x 1 x 1 x    i 2 i 1 u 1

  20. Example: n -1,1 x 1 x     n ( ) p n x   i 1 x 1 x 1 x   1 n 0 i      2 3 n ( x x x ) p n x ( )  0 n      x n a 1           n ( 1) ( 2) ( 3) x p n p n p n          Row Sum= ( 1) ( 2) ( 3) ( ) p n p n p n p n

  21. Row Row Sum Rows Sums p ( n ) n            ( 1) ( 2) ( 3) ( 4) ( 5) ( ) p n p n p n p n p n p n n -1,1             p n ( 2) p n ( 3) 3 ( p n 4) 3 ( p n 5) 5 ( p n 6) p n ( 1) n -2,2              ( ) ( 2) ( 3) ( 4) 3 ( 5) 3 ( 6) ( 1) p n p n p n p n p n p n p n n -2,1 2           n -3,3 ( 3) 4 ( 5) 7 ( 6) 12 ( 7) 2 ( 2) p n p n p n p n p n             p n ( 1) p n ( 4) 5 ( p n 5) 10 ( p n 6) p n ( 2) 2 ( p n 3) n -3,2,1            n -3,1 3 ( 1) ( 2) ( 4) ( 5) 6 ( 6) ( ) p n p n p n p n p n p n

  22. Growth of p ( n ) • p ( n - 1) ≤ p ( n ) ≤ p ( n -1)+ p ( n -2)

  23. Row Row Sum Positivity Rows Sums ( ) p n n            ( 1) ( 2) ( 3) ( 4) ( 5) ( ) p n p n p n p n p n p n n -1,1             p n ( 2) p n ( 3) 3 ( p n 4) 3 ( p n 5) 5 ( p n 6) p n ( 1) n -2,2              ( ) ( 2) ( 3) ( 4) 3 ( 5) 3 ( 6) ( 1) p n p n p n p n p n p n p n n -2,1 2           n -3,3 ( 3) 4 ( 5) 7 ( 6) 12 ( 7) 2 ( 2) p n p n p n p n p n             p n ( 1) p n ( 4) 5 ( p n 5) 10 ( p n 6) p n ( 2) 2 ( p n 3) n -3,2,1            n -3,1 3 ( 1) ( 2) ( 4) ( 5) 6 ( 6) ( ) p n p n p n p n p n p n

  24. Growth of p ( n ) • p ( n - 1) ≤ p ( n ) ≤ p ( n -1)+ p ( n -2) • super-polynomial, sub-exponential  n Q x ( ) p n x ( )  n 0 • asymptotics good enough to show that finitely many subtracted terms guaranteed to cancel out for n sufficiently large

  25. From the bottom up • The sum of the last row is the number of self-conjugate partitions of n , call this s ( n ) . • Conjugate row obtained by multiplying by bottom row

  26. Character Table for S 4 1 4 2,1 2 2 2 3,1 4 1 1 1 1 1 3 1 -1 0 -1 2 0 2 -1 0 3 -1 -1 0 1 1 -1 1 1 -1

  27. From the bottom up • The sum of the last row is the number of self-conjugate partitions of n , call this s ( n ) . • Conjugate row obtained by multiplying by bottom row 1      n n s n x ( ) Q x ( ) s ( ) n x   1 ( 1) i i x    n 0 i 1 n 0 • For every row sum formula in terms of p ( n ) , the conjugate row has the same formula in terms of s ( n ) . • s ( n -1 ) ≤ s ( n ) ≤ s ( n -1)+ s ( n -2) for n > 1

  28. Words of Wisdom The worst thing you can do to a problem is to solve it completely… because then you have to find something else to work on. ̶ Dan Kleitman

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend