chapter 2 first order differential equations part 2
play

Chapter 2: First-Order Differential Equations Part 2 Department of - PowerPoint PPT Presentation

Exact Equations Solutions by Substitutions Summary Chapter 2: First-Order Differential Equations Part 2 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 3, 2013 DE Lecture 4


  1. Exact Equations Solutions by Substitutions Summary Chapter 2: First-Order Differential Equations – Part 2 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 3, 2013 DE Lecture 4 王奕翔 王奕翔

  2. Exact Equations We will not follow the order in the textbook. Instead, Solutions by Substitutions DE Lecture 4 Organization of Lectures in Chapter 2 and 3 Summary ��� Separable DE (2-2) ��� �� DE Linear (2-1) (2-3) Models (3-1) ���� Exact DE Nonlinear (2-6) (2-4) Models (3-2) ���� (2-5) 王奕翔

  3. Exact Equations Solutions by Substitutions Summary 1 Exact Equations 2 Solutions by Substitutions Homogeneous Equations Bernoulli’s Equation 3 Summary DE Lecture 4 王奕翔

  4. Exact Equations Solutions by Substitutions Summary DE Lecture 4 今天,我要出一道微分方程的考題,我可以從哪邊下手? 王奕翔

  5. Exact Equations Solutions by Substitutions DE Lecture 4 Summary One proposal: reverse engineering – 先寫下解答,再反推回去方程式 1 Set up the solution curve: G ( x , y ) = 0 (can be an implicit solution) and an initial point ( x 0 , y 0 ) . 2 Compute the differential of G ( x , y ) : d ( G ( x , y )) = ∂ G ∂ x dx + ∂ G ∂ y dy 3 Since G ( x , y ) = 0 , we have 0 = d ( G ( x , y )) = ∂ G ∂ x dx + ∂ G ∂ y dy 4 Let ∂ G ∂ x = M ( x , y ) and ∂ G ∂ y = N ( x , y ) . Then, we have a DE: dx = − M ( x , y ) M ( x , y ) dx + N ( x , y ) dy = 0 = ⇒ dy N ( x , y ) 王奕翔

  6. Exact Equations Solutions by Substitutions the above observation. We shall develop a general method of solving this kind of DE based on DE Lecture 4 Summary 解題者觀點:看到一個一階常微分方程,若能將其化為 ∂ F ∂ x dx + ∂ F ∂ y dy = 0 We can get the solution: F ( x , y ) = c , where c = F ( x 0 , y 0 ) . Note : the function F ( x , y ) you get may not be the same as the designer’s choice G ( x , y ) . Because the designer chose G ( x , y ) = 0 as his/her solution, while what you get is F ( x , y ) = F ( x 0 , y 0 ) . Nevertheless, G ( x , y ) = F ( x , y ) − F ( x 0 , y 0 ) . 王奕翔

  7. Exact Equations Exact Equation if the LHS is an exact differential. . Solutions by Substitutions Hint: Question: How to check if a differential expression is an exact differential? DE Lecture 4 Exact Differential and Exact Equation Definition (Exact Equation) Summary A differential expression M ( x , y ) dx + N ( x , y ) dy is an Exact Differential if it is the differential of some function z = F ( x , y ) , that is, dz = M ( x , y ) dx + N ( x , y ) dy . A first-order DE of the form M ( x , y ) dx + N ( x , y ) dy = 0 is said to be an ( ) ( ∂ F ) ∂ ∂ ∂ F = ∂ y ∂ x ∂ x ∂ y 王奕翔

  8. Exact Equations Proof. procedure later. In fact, this is the procedure of solving an exact DE. We will outline the . Solutions by Substitutions DE Lecture 4 derivatives. Then, Summary Criterion for an Exact Differential Theorem Let M ( x , y ) and N ( x , y ) be continuous and have continuous first partial ⇒ ∂ M ∂ y = ∂ N M ( x , y ) dx + N ( x , y ) dy is an exact differential ⇐ ∂ x ( ) ( ∂ F ) ∂ ∂ ∂ F “ ⇒ ”: Simply because = ∂ y ∂ x ∂ x ∂ y “ ⇐ ”: We just need to construct a function z = F ( x , y ) such that dz = M ( x , y ) dx + N ( x , y ) dy . 王奕翔

  9. Exact Equations Check if the DE is exact: respect to x ? Solutions by Substitutions DE Lecture 4 Solve Summary Solving an Exact DE Example ( ) ( ) e 2 y − y cos ( xy ) 2 xe 2 y − x cos ( xy ) + 2 y dx + dy = 0 . A: Let M ( x , y ) = e 2 y − y cos ( xy ) and N ( x , y ) = 2 xe 2 y − x cos ( xy ) + 2 y . ( ) ∂ M ∂ y = ∂ e 2 y − y cos ( xy ) = 2 e 2 y − cos ( xy ) + xy sin ( xy ) ∂ y ( ) ∂ N ∂ x = ∂ 2 xe 2 y − x cos ( xy ) + 2 y = 2 e 2 y − cos ( xy ) + xy sin ( xy ) ∂ x Since M = ∂ F ∂ x and we want to find F , why not integrate M with ∫ { } e 2 y − y cos ( xy ) dx + g ( y ) = e 2 y x − sin ( xy ) + g ( y ) . F ( x , y ) = 王奕翔

  10. Exact Equations Solve Solutions by Substitutions be determined. Example Summary Solving an Exact DE DE Lecture 4 ( ) ( ) e 2 y − y cos ( xy ) 2 xe 2 y − x cos ( xy ) + 2 y dx + dy = 0 . A: Let M ( x , y ) = e 2 y − y cos ( xy ) and N ( x , y ) = 2 xe 2 y − x cos ( xy ) + 2 y . So far we found that F ( x , y ) = e 2 y x − sin ( xy ) + g ( y ) where g ( y ) is yet to To find g ( y ) , we use the fact that N = ∂ F ∂ y : ( ) 2 xe 2 y − x cos ( xy ) + 2 y = ∂ F ∂ y = ∂ e 2 y x − sin ( xy ) + g ( y ) ∂ y = 2 xe 2 y − x cos ( xy ) + g ′ ( y ) = ⇒ g ( y ) = y 2 ⇒ dg dy = 2 y = Hence, F ( x , y ) = xe 2 y − sin ( xy ) + y 2 , and the implicit solution is xe 2 y − sin ( xy ) + y 2 = c . 王奕翔

  11. Exact Equations 4 Take partial derivative with respect to y (or x ): dx Ndy = dy Mdx = Ndy Solutions by Substitutions Mdx DE Lecture 4 3 Integrate M with respect to x (or N with respect to y ): Summary General Procedure of Solving an DE Solving an Exact DE M ( x , y ) dx + N ( x , y ) dy = 0 Goal: Find z = F ( x , y ) such that dz = M ( x , y ) dx + N ( x , y ) dy = 0 . 1 Transform DE into the differential form: M ( x , y ) dx + N ( x , y ) dy = 0 . 2 Verify if it is exact: ∂ M = ∂ N ? ∂ y ∂ x ∫ ∫ F ( x , y ) = Mdx + g ( y ) (or F ( x , y ) = Ndy + h ( x ) ) ∂ F ∂ y = ∂ (∫ ) ∂ F ∂ x = ∂ (∫ ) + g ′ ( y ) = N ( x , y ) + h ′ ( x ) = M ( x , y ) ∂ y ∂ x ∫ ( N − ∂ ∫ ) ∫ ( M − ∂ ∫ ) ⇒ g ( y ) = ⇒ h ( x ) = ∂ y ∂ x 王奕翔

  12. Exact Equations A: Check if this equation is exact: Solutions by Substitutions xy dy = DE Lecture 4 Example Summary Nonexact DE Made Exact dx = 20 xy − 2 y x − 3 x y , y (1) = − 1 Solve dy y = 20 − 2 y 2 − 3 x 2 dx = 20 xy − 2 y x − 3 x M ( x , y ) N ( x , y ) � �� � ���� (3 x 2 + 2 y 2 − 20) dx + ⇒ ( xy ) dy = 0 ∂ M ∂ y = 4 y ̸ = ∂ N ∂ x = y . Can we make it exact, by multiplying both M and N with some µ ( x , y ) ? 王奕翔

  13. Exact Equations y This is a PDE ?! How to solve it? Solutions by Substitutions = DE Lecture 4 Nonexact DE Made Exact Example Summary M ( x , y ) N ( x , y ) � �� � ���� dx = 20 xy − 2 y x − 3 x (3 x 2 + 2 y 2 − 20) dx + ⇒ ( xy ) dy = 0 Solve dy Goal: find µ ( x , y ) such that ∂ ( µ M ) = ∂ ( µ N ) ∂ x . Let µ x := ∂µ ∂ x , µ y := ∂µ ∂ y ∂ y . ∂ ( µ M ) = µ y M + M y µ = (3 x 2 + 2 y 2 − 20) µ y + 4 y µ ∂ y ∂ ( µ N ) = µ x N + N x µ = ( xy ) µ x + y µ ∂ x ∂ ( µ M ) = ∂ ( µ N ) ⇒ (3 x 2 + 2 y 2 − 20) µ y + 4 y µ = ( xy ) µ x + y µ ⇐ ∂ y ∂ x 王奕翔

  14. Exact Equations y = x Solutions by Substitutions = DE Lecture 4 Summary Example Nonexact DE Made Exact M ( x , y ) N ( x , y ) � �� � ���� dx = 20 xy − 2 y x − 3 x (3 x 2 + 2 y 2 − 20) dx + ⇒ ( xy ) dy = 0 Solve dy Focus on finding a function µ ( x , y ) such that (3 x 2 + 2 y 2 − 20) µ y + 4 y µ = ( xy ) µ x + y µ Let’s make some restriction: how about finding µ that only depends on x ? ⇒ xyd µ ⇒ d µ dx = 3 µ ⇒ µ = x 3 4 y µ = ( xy ) µ x + y µ = dx = 3 y µ = ( works! ) How about finding µ that only depends on y ? 3 y ⇒ d µ (3 x 2 + 2 y 2 − 20) µ y + 4 y µ = y µ = dy = − 3 x 2 + 2 y 2 − 20 µ ( still hard! ) 王奕翔

  15. Exact Equations = = = dx = Solutions by Substitutions We then solve it by the procedures discussed before: DE Lecture 4 y Summary Nonexact DE Made Exact Example � � M ( x , y ) N ( x , y ) � �� � � �� � dx = 20 xy − 2 y x − 3 x x 3 (3 x 2 + 2 y 2 − 20) dx + ( x 4 y ) dy = 0 ⇒ Solve dy Finally we multiply both M ( x , y ) and N ( x , y ) with µ ( x ) = x 3 (see above). ∫ N = ∂ F Ndy = 1 2 x 4 y 2 + h ( x ) � � ⇒ F ( x , y ) = ∂ y = ( 1 ) M = ∂ F ⇒ x 3 (3 x 2 + 2 y 2 − 20) = ∂ dx = 2 x 3 y 2 + dh � 2 x 4 y 2 + dh ∂ x ∂ x ⇒ h ( x ) = 1 dx = 3 x 5 − 20 x 3 = 2 x 6 − 5 x 4 ⇒ dh ⇒ F ( x , y ) = 1 2 x 4 y 2 + 1 2 x 6 − 5 x 4 王奕翔

  16. Exact Equations Solutions by Substitutions Exercise. Find an interval of definition for the above solution. = = To get an explicit solution, we see that DE Lecture 4 Example Summary Nonexact DE Made Exact dx = 20 xy − 2 y x − 3 x y , y (1) = − 1 Solve dy 2 x 4 y 2 + 1 2 x 6 − 5 x 4 = c . We arrive at an implicit solution: F ( x , y ) = 1 2 x 4 y 2 + 1 2 x 6 − 5 x 4 = c = − 4 . Plug in the initial condition, we get 1 2 x 4 y 2 + 1 1 2 x 6 − 5 x 4 = − 4 = ⇒ y 2 = 10 − x 2 − 8 x − 4 √ 10 − x 2 − 8 x − 4 ⇒ y = ± √ 10 − x 2 − 8 x − 4 ⇒ y = − 王奕翔

  17. Exact Equations However in general this is a PDE which may be hard to solve. M = N Solutions by Substitutions = DE Lecture 4 Summary Nonexact DE M ( x , y ) dx + N ( x , y ) dy = 0 Made Exact Nonexact DE: M y − N x := ∆( x , y ) ̸ = 0 Key Idea 1 : Introduce a function µ ( x , y ) ( integrating factor ) to ensure ∂ ( µ M ) = ∂ ( µ N ) ⇐ ⇒ µ y M + µ M y = µ x N + µ N x ∂ y ∂ x Key Idea 2 : Restrict µ ( x , y ) to be µ ( x ) or µ ( y ) . Plan A: µ ( x , y ) = µ ( x ) = ⇒ µ y = 0 = ⇒ µ M y = µ x N + µ N x ⇒ d µ dx = M y − N x µ = ∆ N µ Plan B: µ ( x , y ) = µ ( y ) = ⇒ µ x = 0 = ⇒ µ y M + µ M y = µ N x dy = N x − M y µ = − ∆ ⇒ d µ M µ 王奕翔

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend