chapter 2 first order differential equations part 1
play

Chapter 2: First-Order Differential Equations Part 1 Department of - PowerPoint PPT Presentation

Overview Solution Curves without a Solution A Numerical Method Separable Equations Linear Equations Summary Chapter 2: First-Order Differential Equations Part 1 Department of Electrical Engineering National Taiwan University


  1. Overview Solution Curves without a Solution A Numerical Method Separable Equations Linear Equations Summary Chapter 2: First-Order Differential Equations – Part 1 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw September 17, 2013 DE Lecture 2 王奕翔 王奕翔

  2. Overview 4 Separable Equations 6 Summary Solutions/Functions Defined by Integrals Discontinuous Coefficients Method 5 Linear Equations 3 A Numerical Method Solution Curves without a Solution 2 Solution Curves without a Solution 1 Overview Summary Linear Equations Separable Equations A Numerical Method DE Lecture 2 王奕翔

  3. Overview 4 Separable Equations 6 Summary Solutions/Functions Defined by Integrals Discontinuous Coefficients Method 5 Linear Equations 3 A Numerical Method Solution Curves without a Solution 2 Solution Curves without a Solution 1 Overview Summary Linear Equations Separable Equations A Numerical Method DE Lecture 2 王奕翔

  4. Overview Solution Curves without a Solution A Numerical Method Separable Equations Linear Equations Summary First-Order Differential Equation Throughout Chapter 2, we focus on solving the first-order ODE: Problem dy (1) DE Lecture 2 Find y = φ ( x ) satisfying dx = f ( x , y ) , subject to y ( x 0 ) = y 0 王奕翔

  5. Overview Solution Curves without a Solution Fourier Transform (14) Fourier Series (11) Laplace Transform (7) 5 Transformation 4 Series Solution (6) Solutions by Substitutions (2-5): Solving Exact Equations (2-4) Solving Linear Equations (2-3) Separable Equations (2-2) Take antiderivative ( Calculus I, II ) 3 Analytic Method 2 Numerical Method (2-6, 9) 1 Graphical Method (2-1) Methods of Solving First-Order ODE Summary Linear Equations Separable Equations A Numerical Method DE Lecture 2 homogeneous equations, Bernoulli’s equation, y ′ = Ax + By + C . 王奕翔

  6. Overview Organization of Lectures in Chapter 2 and 3 Solution Curves without a Solution We will not follow the order in the textbook. Instead, DE Lecture 2 Summary A Numerical Method Separable Equations Linear Equations ��� Separable DE (2-2) ��� �� DE Linear (2-1) (2-3) Models (3-1) ���� Exact DE Nonlinear (2-6) (2-4) Models (3-2) ���� (2-5) 王奕翔

  7. Overview 4 Separable Equations 6 Summary Solutions/Functions Defined by Integrals Discontinuous Coefficients Method 5 Linear Equations 3 A Numerical Method Solution Curves without a Solution 2 Solution Curves without a Solution 1 Overview Summary Linear Equations Separable Equations A Numerical Method DE Lecture 2 王奕翔

  8. Overview Example 1 (Zill&Wright p.36, Fig. 2.1.1.) Solution Curves without a Solution dy DE Lecture 2 Summary Separable Equations Linear Equations A Numerical Method dx = 0 . 2 xy y y solution slope = 1.2 curv e (2, 3) (2, 3) tangent x x 王奕翔

  9. Overview dy arrow indicating the direction of the tangent line. Hence, at every point on the xy -plane, one can in principle sketch an Solution Curves without a Solution dx DE Lecture 2 Key Observation Direction Fields Summary Linear Equations Separable Equations A Numerical Method On the xy -plane, at a point ( x n , y n ) , the first-order derivative � � � � x = x n is the slope of the tangent line of the curve y ( x ) at ( x n , y n ) . From the initial point ( x 0 , y 0 ) , one can connect all the arrows one by one and then sketch the solution curve. ( 土法煉鋼! ) 王奕翔

  10. Overview dy Figure : Family of Solution Curves Figure : Direction Field Solution Curves without a Solution DE Lecture 2 Example 1 (Zill&Wright p.37, Fig. 2.1.3.) A Numerical Method Linear Equations Separable Equations Summary dx = 0 . 2 xy y y 4 4 c>0 2 2 c=0 x x c<0 _2 _2 _4 _4 _4 _2 2 4 _4 _2 2 4 王奕翔

  11. Overview Example 2 (Zill&Wright p.37-38, Fig. 2.1.4.) Solution Curves without a Solution dy DE Lecture 2 Summary Linear Equations Separable Equations A Numerical Method dx = sin y , y (0) = − 1 . 5 y 4 ( x 0 , y 0 ) = (0 , − 1 . 5) 2 x _2 _4 _4 _2 2 4 王奕翔

  12. Overview 4 Separable Equations 6 Summary Solutions/Functions Defined by Integrals Discontinuous Coefficients Method 5 Linear Equations 3 A Numerical Method Solution Curves without a Solution 2 Solution Curves without a Solution 1 Overview Summary Linear Equations Separable Equations A Numerical Method DE Lecture 2 王奕翔

  13. Overview y Increment: . . . . . . Second Point: Solution Curves without a Solution dy dx DE Lecture 2 x Increment: A Numerical Method Separable Equations Initial Point: Linear Equations Summary Euler’s Method The graphical method of “connecting arrows” on the directional field can be mathematically thought of as follows: ( x 0 , y 0 ) x 1 = x 0 + h ( ) � � y 1 = y 0 + h = y 0 + hf ( x 0 , y 0 ) � � x = x 0 ( x 1 , y 1 ) 王奕翔

  14. Overview Euler’s Method Solution Curves without a Solution Recursive Formula DE Lecture 2 Summary Linear Equations Separable Equations A Numerical Method Let h > 0 be the recursive step size, x n +1 = x n + h , y n +1 = y n + hf ( x n , y n ) , ∀ n ≥ 0 x n − 1 = x n − h , y n − 1 = y n − hf ( x n , y n ) , ∀ n ≤ 0 王奕翔

  15. Overview Summary Solution Curves without a Solution Illustration DE Lecture 2 Linear Equations Separable Equations A Numerical Method y Solution Curve y ( x ) ( x 1 , y 1 ) ( x 0 , y 0 ) x x 0 x 1 王奕翔

  16. Overview Summary Solution Curves without a Solution Illustration DE Lecture 2 Linear Equations Separable Equations A Numerical Method y Solution Curve y ( x ) ( x 2 , y 2 ) ( x 1 , y 1 ) ( x 0 , y 0 ) x x 0 x 1 x 2 王奕翔

  17. Overview Summary Solution Curves without a Solution Illustration DE Lecture 2 Linear Equations Separable Equations A Numerical Method y Solution Curve Numerical y ( x ) Solution Curve ( x 2 , y 2 ) ( x 1 , y 1 ) ( x 0 , y 0 ) x x 0 x 1 x 2 王奕翔

  18. Overview Solution Curves without a Solution A Numerical Method Separable Equations Linear Equations Summary Remarks The approximate numerical solution converges to the actual solution Euler’s method is just one simple numerical method for solving differential equations. Chapter 9 of the textbook introduces more advanced methods. DE Lecture 2 as h → 0 . 王奕翔

  19. Overview 4 Separable Equations 6 Summary Solutions/Functions Defined by Integrals Discontinuous Coefficients Method 5 Linear Equations 3 A Numerical Method Solution Curves without a Solution 2 Solution Curves without a Solution 1 Overview Summary Linear Equations Separable Equations A Numerical Method DE Lecture 2 王奕翔

  20. Overview Solution Curves without a Solution special structure of it. We start by inspecting the equation and see if we can identify some (1) dy Problem Recall the first-order ODE (1) we would like to solve Solving (1) Analytically Summary Linear Equations Separable Equations A Numerical Method DE Lecture 2 Find y = φ ( x ) satisfying dx = f ( x , y ) , subject to y ( x 0 ) = y 0 王奕翔

  21. Overview dy Method: Direct Integration Solution Curves without a Solution DE Lecture 2 Summary Linear Equations Separable Equations A Numerical Method When f ( x , y ) depends only on x If f ( x , y ) = g ( x ) , then by what we learn in Calculus I & II, ∫ x dx = g ( x ) = ⇒ y ( x ) = g ( t ) dt + y 0 x 0 In the first-order ODE (1), if f ( x , y ) = g ( x ) only depends on x , it can be solved by directly integrating the function g ( x ) . 王奕翔

  22. Overview Solve Plugging in the initial condition, we have A: From calculus we know that the Solution Curves without a Solution dy DE Lecture 2 Example Summary Linear Equations Separable Equations A Numerical Method When f ( x , y ) depends only on x dx = 1 x + e x , subject to y ( − 1) = 0 . ∫ 1 ∫ xdx = ln | x | , e x dx = e x y ( x ) = ln | x | + e x − 1 e , x < 0 . 王奕翔

  23. Overview dy Then, we have That is, dy Solution Curves without a Solution = integrate both sides DE Lecture 2 Separable Equations dy Summary A Numerical Method Linear Equations When f ( x , y ) depends only on y If f ( x , y ) = h ( y ) , then ∫ y dx = h ( y ) = ⇒ h ( y ) = dx ⇒ h ( y ) = x − x 0 y 0 Assume that the antiderivative ( 不定積分、反導函數 ) of 1/ h ( y ) is H ( y ) . ∫ 1 h ( y ) dy = H ( y ) . ⇒ y ( x ) = H − 1 ( x − x 0 + H ( y 0 )) H ( y ) − H ( y 0 ) = x − x 0 = 王奕翔

  24. Overview A: Use the same principle, we have = = = Solution Curves without a Solution dy dy DE Lecture 2 Linear Equations Example A Numerical Method Separable Equations Summary When f ( x , y ) depends only on y dx = ( y − 1) 2 . Solve dy dx = ( y − 1) 2 = ⇒ ( y − 1) 2 = dx , y ̸ = 1 1 ⇒ 1 − y = x + c , for some constant c 1 ⇒ y = 1 − x + c , for some constant c , or y = 1 Note: How about the constant function y = 1 ? ⇒ y = 1 is called a singular solution . 王奕翔

  25. Overview a u . . . . . . cot u Solution Curves without a Solution cos u sin u a u tan u DE Lecture 2 A Numerical Method Separable Equations Linear Equations u n Summary Antiderivative Table of Integrals Function u n +1 n + 1 + C , n ̸ = − 1 u − 1 ln | u | + C ln a + C − cos u + C sin u + C − ln | cos u | + C ln | sin u | + C 1 1 a tan − 1 u a + C a 2 + u 2 1 sin − 1 u a + C √ a 2 − u 2 王奕翔

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend