chapter 2 first order differential equations part 1
play

Chapter 2: First-Order Differential Equations Part 1 Department of - PowerPoint PPT Presentation

Overview Solution Curves without a Solution A Numerical Method Separable Equations Chapter 2: First-Order Differential Equations Part 1 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw September 12, 2013


  1. Overview Solution Curves without a Solution A Numerical Method Separable Equations Chapter 2: First-Order Differential Equations – Part 1 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw September 12, 2013 DE Lecture 2 王奕翔 王奕翔

  2. Overview Solution Curves without a Solution A Numerical Method Separable Equations 1 Overview 2 Solution Curves without a Solution 3 A Numerical Method 4 Separable Equations DE Lecture 2 王奕翔

  3. Overview Solution Curves without a Solution A Numerical Method Separable Equations 1 Overview 2 Solution Curves without a Solution 3 A Numerical Method 4 Separable Equations DE Lecture 2 王奕翔

  4. Overview Solution Curves without a Solution A Numerical Method Separable Equations First-Order Differential Equation Throughout Chapter 2, we focus on solving the first-order ODE: Problem dy (1) DE Lecture 2 Find y = φ ( x ) satisfying dx = f ( x , y ) , subject to y ( x 0 ) = y 0 王奕翔

  5. Overview Solution Curves without a Solution Fourier Transform (14) Fourier Series (11) Laplace Transform (7) 5 Transformation 4 Series Solution (6) Solutions by Substitutions (2-5): Solving Exact Equations (2-4) Solving Linear Equations (2-3) Separable Equations (2-2) Take antiderivative ( Calculus I, II ) 3 Analytic Method 2 Numerical Method (2-6, 9) 1 Graphical Method (2-1) Methods of Solving First-Order ODE Separable Equations A Numerical Method DE Lecture 2 homogeneous equations, Bernoulli’s equation, y ′ = Ax + By + C . 王奕翔

  6. Overview We will not follow the order in the textbook. Instead, Solution Curves without a Solution DE Lecture 2 Organization of Lectures in Chapter 2 and 3 Separable Equations A Numerical Method ��� Separable DE (2-2) ��� �� DE Linear (2-1) (2-3) Models (3-1) ���� Exact DE Nonlinear (2-6) (2-4) Models (3-2) ���� (2-5) 王奕翔

  7. Overview Solution Curves without a Solution A Numerical Method Separable Equations 1 Overview 2 Solution Curves without a Solution 3 A Numerical Method 4 Separable Equations DE Lecture 2 王奕翔

  8. Overview dy Solution Curves without a Solution DE Lecture 2 Example 1 (Zill&Wright p.36, Fig. 2.1.1.) Separable Equations A Numerical Method dx = 0 . 2 xy y y solution slope = 1.2 curv e (2, 3) (2, 3) tangent x x 王奕翔

  9. Overview dy arrow indicating the direction of the tangent line. Hence, at every point on the xy -plane, one can in principle sketch an Solution Curves without a Solution dx DE Lecture 2 Key Observation Direction Fields Separable Equations A Numerical Method On the xy -plane, at a point ( x n , y n ) , the first-order derivative � � � � x = x n is the slope of the tangent line of the curve y ( x ) at ( x n , y n ) . From the initial point ( x 0 , y 0 ) , one can connect all the arrows one by one and then sketch the solution curve. ( 土法煉鋼! ) 王奕翔

  10. Overview dy Figure : Family of Solution Curves Solution Curves without a Solution Figure : Direction Field Example 1 (Zill&Wright p.37, Fig. 2.1.3.) Separable Equations A Numerical Method DE Lecture 2 dx = 0 . 2 xy y y 4 4 c>0 2 2 c=0 x x c<0 _2 _2 _4 _4 _4 _2 2 4 _4 _2 2 4 王奕翔

  11. Overview dy Solution Curves without a Solution DE Lecture 2 Example 2 (Zill&Wright p.37-38, Fig. 2.1.4.) Separable Equations A Numerical Method dx = sin y , y (0) = − 1 . 5 y 4 ( x 0 , y 0 ) = (0 , − 1 . 5) 2 x _2 _4 _4 _2 2 4 王奕翔

  12. Overview Solution Curves without a Solution A Numerical Method Separable Equations 1 Overview 2 Solution Curves without a Solution 3 A Numerical Method 4 Separable Equations DE Lecture 2 王奕翔

  13. Overview dy . . . . . . Second Point: Solution Curves without a Solution dx DE Lecture 2 be mathematically thought of as follows: y Increment: x Increment: A Numerical Method Separable Equations Euler’s Method The graphical method of “connecting arrows” on the directional field can Initial Point: ( x 0 , y 0 ) x 1 = x 0 + h ( ) � � y 1 = y 0 + h = y 0 + hf ( x 0 , y 0 ) � � x = x 0 ( x 1 , y 1 ) 王奕翔

  14. Overview Solution Curves without a Solution A Numerical Method Separable Equations Euler’s Method Recursive Formula DE Lecture 2 Let h > 0 be the recursive step size, x n +1 = x n + h , y n +1 = y n + hf ( x n , y n ) , ∀ n ≥ 0 x n − 1 = x n − h , y n − 1 = y n − hf ( x n , y n ) , ∀ n ≤ 0 王奕翔

  15. Overview Solution Curves without a Solution A Numerical Method Separable Equations Illustration DE Lecture 2 y Solution Curve y ( x ) ( x 1 , y 1 ) ( x 0 , y 0 ) x x 0 x 1 王奕翔

  16. Overview Illustration Solution Curves without a Solution DE Lecture 2 Separable Equations A Numerical Method y Solution Curve y ( x ) ( x 2 , y 2 ) ( x 1 , y 1 ) ( x 0 , y 0 ) x x 0 x 1 x 2 王奕翔

  17. Overview Illustration Solution Curves without a Solution DE Lecture 2 Separable Equations A Numerical Method y Solution Curve Numerical y ( x ) Solution Curve ( x 2 , y 2 ) ( x 1 , y 1 ) ( x 0 , y 0 ) x x 0 x 1 x 2 王奕翔

  18. Overview Solution Curves without a Solution A Numerical Method Separable Equations Remarks The approximate numerical solution converges to the actual solution Euler’s method is just one simple numerical method for solving differential equations. Chapter 9 of the textbook introduces more advanced methods. DE Lecture 2 as h → 0 . 王奕翔

  19. Overview Solution Curves without a Solution A Numerical Method Separable Equations 1 Overview 2 Solution Curves without a Solution 3 A Numerical Method 4 Separable Equations DE Lecture 2 王奕翔

  20. Overview Solution Curves without a Solution A Numerical Method Separable Equations Solving (1) Analytically Recall the first-order ODE (1) we would like to solve Problem dy (1) We start by inspecting the equation and see if we can identify some special structure of it. DE Lecture 2 Find y = φ ( x ) satisfying dx = f ( x , y ) , subject to y ( x 0 ) = y 0 王奕翔

  21. Overview dy Method: Direct Integration Solution Curves without a Solution DE Lecture 2 Separable Equations A Numerical Method When f ( x , y ) depends only on x If f ( x , y ) = g ( x ) , then by what we learn in Calculus I & II, ∫ x dx = g ( x ) = ⇒ y ( x ) = g ( t ) dt + y 0 x 0 In the first-order ODE (1), if f ( x , y ) = g ( x ) only depends on x , it can be solved by directly integrating the function g ( x ) . 王奕翔

  22. Overview Solve Plugging in the initial condition, we have Solution Curves without a Solution dy A: From calculus we know that the Example Separable Equations A Numerical Method DE Lecture 2 When f ( x , y ) depends only on x dx = 1 x + e x , subject to y ( − 1) = 0 . ∫ 1 ∫ xdx = ln | x | , e x dx = e x y ( x ) = ln | x | + e x − 1 e , x < 0 . 王奕翔

  23. Overview dy Then, we have That is, dy Solution Curves without a Solution = integrate both sides DE Lecture 2 dy A Numerical Method Separable Equations When f ( x , y ) depends only on y If f ( x , y ) = h ( y ) , then ∫ y dx = h ( y ) = ⇒ h ( y ) = dx ⇒ h ( y ) = x − x 0 y 0 Assume that the antiderivative ( 不定積分、反導函數 ) of 1/ h ( y ) is H ( y ) . ∫ 1 h ( y ) dy = H ( y ) . ⇒ y ( x ) = H − 1 ( x − x 0 + H ( y 0 )) H ( y ) − H ( y 0 ) = x − x 0 = 王奕翔

  24. Overview A: Use the same principle, we have = = dy Solution Curves without a Solution dy DE Lecture 2 dy Solve Example A Numerical Method Separable Equations When f ( x , y ) depends only on y dx = ( y − 1) 2 dx = ( y − 1) 2 = ⇒ ( y − 1) 2 = dx 1 ⇒ 1 − y = x + c , for some constant c 1 ⇒ y = 1 − x + c , for some constant c 王奕翔

  25. Overview separable variables . dx dy Solution Curves without a Solution dy General Procedure of Solving a Separable DE DE Lecture 2 Separable Equations Definition (Separable Equations) Separable Equations A Numerical Method If in (1) the function f ( x , y ) on the right hand side takes the form f ( x , y ) = g ( x ) h ( y ) , , we call the first-order ODE separable , or to have 1 分別移項 : h ( y ) = dx g ( x ) . ∫ ∫ 2 兩邊積分 : h ( y ) = ⇒ H ( y ) = G ( x ) + c . g ( x ) = 3 代入條件 : c = H ( y 0 ) − G ( x 0 ) . 4 取反函數 : y = H − 1 ( G ( x ) + H ( y 0 ) − G ( x 0 )) . 王奕翔

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend