chaos and quantum field theory
play

Chaos and Quantum Field Theory 1605.08124 (hep-th) Koji Hashimoto - PowerPoint PPT Presentation

OIST-RIKEN-Osaka joint workshop Big Waves of TheoreFcal Science in Okinawa, at OIST, 7th July, 2016 Chaos and Quantum Field Theory 1605.08124 (hep-th) Koji Hashimoto (Osaka u) w/ Keiju Murata (Keio u) Kentaroh Yoshida (Kyoto u)


  1. OIST-RIKEN-Osaka joint workshop “Big Waves of TheoreFcal Science in Okinawa”, at OIST, 7th July, 2016 Chaos and Quantum Field Theory 1605.08124 (hep-th) Koji Hashimoto (Osaka u) w/ Keiju Murata (Keio u) Kentaroh Yoshida (Kyoto u) "wPendulum" made by Takashi Yamaguchi

  2. How is this quantum field theory chosen to be our universe? - 19 real parameters - Symmetry group : SU(3) x SU(2) x U(1) - Ma_er content : quark, lepton, Higgs, gauge bosons - Comlexity (Choas)? How?

  3. � � L QCD = − 1 µ ν F aµ ν + ¯ 4 F a ψ i ( i γ µ D µ − m i ) ψ i Which “QCD” is more chao1c? 3

  4. Which one is more chao1c? 4

  5. Which one is more chao1c? 5

  6. Chaos hidden in strongly coupled theories Chaos : sensiFve to iniFal condiFons 1 4 p Chaos in effecFve model of QCD 2 4p Chaos in exact (supersymmetric) QCD 3 5p 4 Discussion: chaoFc QFT 1p

  7. 1-1 Chaos : sensi1ve to ini1al condi1ons Classical chaos = Non-periodic bounded orbits sensiFve to iniFal condiFons in non-linear determinisFc dynamical systems Long history - Three-body planetary system [Poincare, 1892] - Atmospheric model, bu_erfly effect [Lorenz, 1963] - Billiard ball [Bunimovich, 1974] - Yang-Mills? [Savvidy 1981, Muller et al. 1992] Lots of applicaFons InformaFon theory : Kolmogorov-Sinai entropy ThermalizaFon of heavy ion collisions [Kunihiro et al., 2009] Math modeling in chemical reacFons, biology, economy, sociology, traffic forecast, financial crisis, cryptography, etc 7

  8. 1-2 Poincare sec1on captures chao1c phase x ( t ) ˙ Small Poincare energy secFon x ( t ) MoFon in the phase space Large energy 8

  9. 1-3 Lyapunov exponent is the chaos index d ( t ) ∼ d (0) exp[ Lt ] d ( t ) Lyapunov exponent d (0) 1 t log d ( t ) L = lim t →∞ lim d (0) d (0) → 0 L � 0 . 38 ( l 1 /l 2 = 1) L � 0 . 30 ( l 1 /l 2 = 2) 9

  10. 1-4 Chaos in quantum systems? Quantum chaos = QuanFzing classically chaoFc system Energy level spacings: Wigner, not Poisson Atomic energy spectra of Lithium [Pando-Zayas, 00] under a constant electric field 10

  11. Chaos hidden in strongly coupled theories Chaos : sensiFve to iniFal condiFons 1 4 p Chaos in effecFve model of QCD 2 4 p Chaos in exact (supersymmetric) QCD 3 5p 4 Discussion: chaoFc QFT 1p

  12. 2-1 QCD is truly quantum ¯ Quarks are confined to form mesons ψ ψ ¯ ¯ ψγ 5 ψ ∼ π ψψ ∼ σ � ¯ ψ ( x ) ψ ( x ) � � = 0 Quarks are condensed, to break ψ ( x ) → exp[ i γ 5 θ ] ψ ( x ) chiral symmetry ψ ( x ) → ¯ ¯ ψ ( x ) exp[ i γ 5 θ ] spontaneously 12

  13. 2-2 Effec1ve model of QCD: Sigma model The model describes QCD with: - 1-flavor, ignoring anomaly - 2-flavor, neutral pion sector Breaking of U(1) (or sigma_3 of SU(2)) - spontaneously by chiral condensate Bo_om - explicitly by quark mass 13

  14. 2-3 Chaos of quark condensate Poincare secFons for E=100[MeV] E=130[MeV] E=140[MeV] E=150[MeV] E=160[MeV] E=200[MeV] 14

  15. 2-4 Posi1ve Lyapunov exponent 40 35 30 25 20 15 10 5 0 130 140 150 160 170 180 15

  16. Chaos hidden in strongly coupled theories Chaos : sensiFve to iniFal condiFons 1 4 p Chaos in effecFve model of QCD 2 4 p Chaos in exact (supersymmetric) QCD 3 5p 4 Discussion: chaoFc QFT 1p

  17. 3-1 Exact classical meson theory of SQCD Classical acFon Meson masses: [Kruczenski, Mateos, Myers, Winters 03] EffecFve theory of mesons of “N=2 supersymmetric QCD” - N=4 Super Yang-Mills plus N=2 quark hypermulFplets - Parameter of the theory: - 2-flavor, quark mass - SU( ) gauge group with large - Large ‘t Hoos coupling 17

  18. 3-2 Deriva1on via string theory QCD, purely quantum Classical gravity (strong coupling limit) 2 D7-branes meson = N C D3-brane N=4 SU(N c ) Super Yang-Mills D7-branes in AdS 5 × S 5 + N=2 quark hypermultiplet [Maldacena, 98][Karch, Katz 02] 18

  19. 3-3 Equivalence to “Yang-Mills-Higgs” 19

  20. 3-4 Chaos of quark condensate Chaos-Order phase transiFon: Poincare secFons for E=0.05 E=0.1 E=0.3 E=0.6 E=0.8 E=1 20

  21. 3-5 Smaller Nc, more chao1c Lyapunov exponent Scale invariance 21

  22. Chaos hidden in strongly coupled theories Chaos : sensiFve to iniFal condiFons 1 4 p Chaos in effecFve model of QCD 2 4 p Chaos in exact (supersymmetric) QCD 3 5p 4 Discussion: chaoFc QFT 1p

  23. 4 Discussion: chao1c QFT 1) Holographic principle? [Aref’eva, Medvedev, Rytchkov, Volovich 99] Integrability versus chaos. [Asano, Kawai, Yoshida, 15] Black holes? InformaFon loss? [Hawking 14] [Farahi, PandoZayas, 14] Upper bound of chaos? [Maldacena, Stanford, Susskind, 15] 2) Entropy producFon? Phase transiFon is a thermal entropy producFon. Kolmogorov-Sinai entropy = Shannon entropy rate [Latora, Branger, 99] ThermalizaFon from color glass? [Kunihiro, Muller, Ohnishi, Schafer, 10] 3) Standard Model? Cosmology? Higgs criFcality? Higgs inflaFon? Anarchy? 23

  24. Chaos hidden in strongly coupled theories Chaos : sensiFve to iniFal condiFons 1 4 p Chaos in effecFve model of QCD 2 4 p Chaos in exact (supersymmetric) QCD 3 5p 4 Discussion: chaoFc QFT 1p

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend