carbon nanotubes as ultrahigh q mechanical resonators at
play

Carbon nanotubes as ultrahigh-Q mechanical resonators at 300MHz - PowerPoint PPT Presentation

Carbon nanotubes as ultrahigh-Q mechanical resonators at 300MHz uttel , Gary A. Steele, Benoit Witkamp, Menno Poot Andreas K. H Leo P . Kouwenhoven, Herre S. J. van der Zant -64.5 dBm 400 nm Q =140670 88 V RF E (t) ~2cm source CNT


  1. Carbon nanotubes as ultrahigh-Q mechanical resonators at 300MHz uttel ∗ , Gary A. Steele, Benoit Witkamp, Menno Poot Andreas K. H¨ Leo P . Kouwenhoven, Herre S. J. van der Zant -64.5 dBm 400 nm Q =140670 88 V RF E (t) ~2cm source CNT drain V sd I (pA) 87 A u(t) V g gate 86 800 nm 293.41 293.42 293.43 � (MHz) ∗ Present address: Institute for Experimental and Applied Physics, University of Regensburg, Germany Solid State Based Quantum Information Processing — Herrsching, 2009

  2. Nanotubes as beam resonators — up to now complicated setup — even at 1K, maximally Q ≃ 2000 Ultrasensitive Mass Sensing with a Nanotube Electromech. Atomic-Scale Mass Sensing Using Carbon Resonator Nanotube Resonators B. Lassagne, D. Garcia-Sanchez, A. Aguasca and A. Hsin-Ying Chiu, Peter Hung, Henk W. Ch. Bachtold Postma and Marc Bockrath Nano Lett., 2008, 8 (11), pp 3735–373 Nano Lett., 2008, 8 (12), pp 4342–434

  3. Why low Q? Many possible reasons. • HF cables directly to sample: heating, noise • Contamination of the nanotubes during lithography • Clamping points?

  4. Chip fabrication and measurement setup 400 nm V RF E (t) ~2cm source drain CNT V sd A V g gate 800 nm • Basic chip geometry and fabrication as already shown by Georg G¨ otz • Additional wet-etch step to suspend the nanotube over full length • All gate areas connected to a single gate voltage source V g • RF antenna suspended ∼ 2cm above chip • Dilution refrigerator ( T ≃ 20mK) • Only dc measurement A. K. H¨ uttel et al. , NanoLett. ASAP (2009), doi:10.1021/nl900612h

  5. dc Coulomb blockade measurement — beautiful diamonds I (nA) |I| (pA) 2 V sd (mV) 1 10000 0 1000 0.5 100 10 -2 0 1 -4.4 -4.2 V g (V) -4.0 -0.88 -0.86 -0.84 -0.82 V g (V) highly regular quantum dot within the nanotube source dot drain � V g � S N el. � S � D � S � D � D V SD I � Dot V g gate CB SET A. K. H¨ uttel et al. , NanoLett. ASAP (2009), doi:10.1021/nl900612h

  6. Fixed V g and V SD , sweep of RF signal frequency 2 Q =140670 -17.8 dBm -64.5 dBm 88 I (pA) I (nA) 87 1 86 0 100 300 500 293.41 293.42 293.43 293.44 � (MHz) � (MHz) • Sharp resonant structure in I dc ( ν ) • Very low driving power required • From FWHM, Q ≃ 140000 A. K. H¨ uttel et al. , NanoLett. ASAP (2009), doi:10.1021/nl900612h

  7. V g dependence — this is really a mechanical resonance! � (MHz) 350 red: continuum beam model 300 � (MHz) 250 300 200 150 d I 250 d � -6 -5 -4 -3 -2 -1 0 V g (V) (pA/MHz) 1000 200 100 150 10 -6 -4 -2 V g (V) 0 A. K. H¨ uttel et al. , NanoLett. ASAP (2009), doi:10.1021/nl900612h

  8. Detection mechanism — mechanically induced averaging 0.6 1.5 V g =−5.17V V g =−5.16V 2 I (nA) I (nA) � I ac,eff V g 1 0 0 0 285 305 285 305 -5.22 -5.21 -5.2 -5.19 � (MHz) � (Mhz) V g (V) • at resonant driving the nanotube position oscillates • oscillating C g − → averaging over CB oscillations amplitude calculated from I ( V ) DC g 0.1 � I (nA) 0 -0.1 ac,eff =1mV V g measured resonance amplitude I max ( ) � � -5.22 -5.21 -5.2 -5.19 -5.22 -5.21 -5.2 -5.19 V g (V) V g (V) A. K. H¨ uttel et al. , NanoLett. ASAP (2009), doi:10.1021/nl900612h

  9. Some numbers • Resonance frequency 120MHz � ν � 360MHz • Zero-tension frequency consistent with CNT diameter from band gap • V g dependence of frequency consistent with bending vibration mode • Quality factor up to Q ≃ 150000 • Estimated motion amplitude at resonant driving ∼ 250pm compare thermal motion 6 . 5pm, zero-point motion 1 . 9pm A. K. H¨ uttel et al. , NanoLett. ASAP (2009), doi:10.1021/nl900612h

  10. Driving into nonlinear response... 80 mK, -70 dBm I (pA) • same temperature • same working point V g , V SD -62 dBm I (pA) I (pA) • low driving power: symmetric, “linear” response -56 dBm I (pA) • high driving power: asymmetric response, hysteresis -52.5 dBm Duffing-like oscillator I (pA) � (MHz) A. K. H¨ uttel et al. , NanoLett. ASAP (2009), doi:10.1021/nl900612h

  11. ... and then increasing the temperature -53 dBm, 20mK I (pA) • same driving power • same working point V g , V SD 80mK I (pA) • low temperature: asymmetric response, hysteresis 120mK Duffing-like oscillator I (pA) • high temperature: symmetric, “linear” response 160mK I (pA) peak broadening � (MHz) A. K. H¨ uttel et al. , NanoLett. ASAP (2009), doi:10.1021/nl900612h

  12. Temperature dependence of Q (a) -66 dBm, 40mK I (pA) 5 Q=123578 10 -0.36 ~ T Q-factor (b) -50.5 dBm, 320mK I (pA) Q=59283 (c) -45 dBm, 1K I (pA) Q=23210 4 10 0.01 0.1 1 � (MHz) Temperature (K) Q ( T ) fits power law prediction for intrinsic dissipation in nanotube → H. Jiang et al. , Phys. Rev. Lett. 93 , 185501 (2004) − A. K. H¨ uttel et al. , NanoLett. ASAP (2009), doi:10.1021/nl900612h

  13. Summary & outlook, but no conclusion yet! • Nanotube as light, extremely tunable high- Q RF resonator • Self-detection of motion via dc current • Easy driving into nonlinear oscillator regime • Q ( T ) is consistent with intrinsic dissipation model u • Application as mass sensor: sensitivity 4 . 2 √ Hz • Without driving: mechanical thermal occupation n ≃ 1 . 2 • “Large-scale phenomena” of the system – but stay tuned for more! A. K. H¨ uttel et al. , NanoLett. ASAP (2009), doi:10.1021/nl900612h

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend