carbon nanotubes as ultrahigh q electromechanical
play

Carbon nanotubes as ultrahigh-Q electromechanical resonators at - PowerPoint PPT Presentation

Carbon nanotubes as ultrahigh-Q electromechanical resonators at 300MHz uttel , Gary A. Steele, Benoit Witkamp, Menno Poot Andreas K. H Leo P . Kouwenhoven, Herre S. J. van der Zant -64.5 dBm 400 nm Q =140670 88 V RF E (t) ~2cm source


  1. Carbon nanotubes as ultrahigh-Q electromechanical resonators at 300MHz uttel ∗ , Gary A. Steele, Benoit Witkamp, Menno Poot Andreas K. H¨ Leo P . Kouwenhoven, Herre S. J. van der Zant -64.5 dBm 400 nm Q =140670 88 V RF E (t) ~2cm source CNT drain V sd I (pA) 87 A u(t) V g gate 86 800 nm 293.41 293.42 293.43 � (MHz) ∗ Present address: Institute for Experimental and Applied Physics, University of Regensburg, Germany 18th International Conference on Electronic Properties of Two-Dimensional Systems — Kobe, 2009

  2. Nanotubes as beam resonators — up to now complicated setup — even at 1K, maximally Q ≃ 2000 • Nanotube as nonlinear circuit element • RF downmixing at mech. resonance • Q � 2000 — why? • HF cables to sample: heating, noise • Contamination during lithography • Clamping points? Ultrasensitive Mass Sensing with a Nanotube Electromech. Resonator B. Lassagne, D. Garcia-Sanchez, A. Aguasca and A. Bachtold Nano Lett., 2008, 8 (11), pp 3735–373

  3. Chip fabrication and measurement setup 400 nm V RF E (t) ~2cm source drain CNT V sd A V g gate 800 nm • Nanotube CVD-grown above Pt electrodes, across pre-defined trench • Back gate connected to a gate voltage source V g • RF antenna suspended ∼ 2cm above chip • Dilution refrigerator ( T ≃ 20mK) • Only dc measurement G. A. Steele et al. , Nature Nanotech. 4 , 363 (2009); A. K. H¨ uttel et al. , Nano Lett. 9 , 2547 (2009)

  4. dc Coulomb blockade measurement — beautiful diamonds I (nA) |I| (pA) 2 V sd (mV) 1 10000 0 1000 0.5 100 10 -2 0 1 -4.4 -4.2 V g (V) -4.0 -0.88 -0.86 -0.84 -0.82 V g (V) highly regular quantum dot within the nanotube source dot drain � V g � S N el. � S � D � S � D � D V SD I � Dot V g gate CB SET A. K. H¨ uttel et al. , Nano Lett. 9 , 2547 (2009)

  5. Fixed V g and V SD , sweep of RF signal frequency 2 Q =140670 -17.8 dBm -64.5 dBm 88 I (pA) I (nA) 87 1 86 0 100 300 500 293.41 293.42 293.43 293.44 � (MHz) � (MHz) • Sharp resonant structure in I dc ( ν ) • Very low driving power required • From FWHM, Q ≃ 140000 A. K. H¨ uttel et al. , Nano Lett. 9 , 2547 (2009)

  6. V g dependence — this is really a mechanical resonance! � (MHz) 350 red: continuum beam model 300 � (MHz) 250 300 200 150 d I 250 d � -6 -5 -4 -3 -2 -1 0 V g (V) (pA/MHz) 1000 200 100 150 10 -6 -4 -2 V g (V) 0 larger | V g | − → increased tension − → higher frequency ν A. K. H¨ uttel et al. , Nano Lett. 9 , 2547 (2009)

  7. Detection mechanism — mechanically induced averaging 2 • at resonant driving the nanotube I (nA) � I ac,eff V g position oscillates 1 • oscillating C g 0 − → fast averaging over I ( V g ) 0.1 � I (nA) 0 -0.1 • black line: dc measurement I ( V g ) • red line: this numerically averaged 0.1 � I (nA) 0 • blue: difference, effect of averaging -0.1 • red points: measured peak amplitude in I ( ν ) , for different values of V g -5.22 -5.21 -5.2 -5.19 V g (V) A. K. H¨ uttel et al. , Nano Lett. 9 , 2547 (2009)

  8. Driving into nonlinear response 80 mK, -70 dBm I (pA) • same temperature • same working point V g , V SD -62 dBm I (pA) I (pA) • low driving power: symmetric, “linear” response -56 dBm I (pA) • high driving power: asymmetric response, hysteresis -52.5 dBm Duffing-like oscillator I (pA) � (MHz) A. K. H¨ uttel et al. , Nano Lett. 9 , 2547 (2009)

  9. Temperature dependence of Q (a) -66 dBm, 40mK I (pA) 5 Q=123578 10 -0.36 ~ T Q-factor (b) -50.5 dBm, 320mK I (pA) Q=59283 (c) -45 dBm, 1K I (pA) Q=23210 4 10 0.01 0.1 1 � (MHz) Temperature (K) Q ( T ) fits power law prediction for intrinsic dissipation in nanotube − → H. Jiang et al. , Phys. Rev. Lett. 93 , 185501 (2004) A. K. H¨ uttel et al. , Nano Lett. 9 , 2547 (2009)

  10. Detailed ν ( V g ) : in SET, frequency decreases I (nA) 8 dc current 0 140.0 � (MHz) N holes RF response N-1 holes 139.2 -0.90 -0.84 V g (V) “Coulomb blockade oscillations of mechanical resonance frequency” electrostatic contribution to spring constant

  11. Also Q and nonlinearity dominated by backaction ΔI sd (nA) 0.1 ΔI sd (nA) -0.1 -0.5 1.0 258 -60 dB -45 dB • Dissipation whenever charge can fluctuate � (MHz) • Q decreases on SET peaks 256 • Nonlinearity dominated -4.345 -4.335 -4.345 -4.335 V g (V) V g (V) by tunneling 1 nA Up Down f 0 Fit Q ~ 57000 • Switches between 20000 α < 0 ΔI sd weakening and 2900 α > 0 softening spring 90000 α < 0 -200 200 256 258 - 0 (kHz) � (MHz) � �

  12. Summary, conclusion & outlook! • 120MHz � ν � 360MHz, Q � 150000 • Self-detection of motion via dc current • Easy driving into nonlinear oscillator regime • Q ( T ) is consistent with intrinsic dissipation model • Single-electron steps of the resonance frequency • Backaction of single electron tunneling on ν , Q , nonlinearity • Self-excitation of motion! • Estimated motion amplitude at resonant driving ∼ 250pm compare thermal motion 6 . 5pm, zero-point motion 1 . 9pm u • Application as mass sensor: sensitivity 4 . 2 √ Hz • Without driving: mechanical thermal occupation n ≃ 1 . 2 • Stay tuned for more interesting results!! A. K. H¨ uttel et al. , Nano Lett. 9 , 2547 (2009); G. A. Steele, A. K. H¨ uttel et al.

  13. Self-excitation of the resonator 050 dI/dV ( S) dI/dV ( S) -10 5 A B D I sd 2 5 10 I sd (nA) sd (mV) sd (mV) V -4.93 g 5 V V -10 -2 0 -5.19 -5.17 -1.05 -0.95 V g (V) V g (V) E 284.5 C 10 nA f (MHz) I sd 283.5 0.5 sd (nA) V I V sd g -0.75 -4.935 -4.93 V g (V) Usmani et al. , PRB 75 , 195312 (2007)

  14. Model for ν ( V g ) • Electrostatic force between tube and backgate: F dot = 1 d C g � 2 � V g − V dot (1) 2 d z • Quantum dot voltage: V dot = C g V g + q dot q dot ( q c ) = −| e |� N � ( q c ) , q c = C g V g (2) , C dot • Electrostatic contribution to spring constant: � 2 � � d C g � k dot = V g ( V g − V dot ) 1 −| e | d � N � (3) c dot d z d q c g /C DOT -q DOT = |e| N(q c ) g V DOT C V e/C DOT 1e q c = C g V g q c = C g V g

  15. Model for α ( V g ) Frequency α < 0 α > 0 α < 0 Gate Voltage � 2 d 2 k dot α dot = − d 3 F d z 3 = d 2 � d C g d z 2 k dot ( q c ) = V 2 (4) g d q 2 d z c The sign of α dot follows the sign of the curvature of k dot .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend