caagt
play

caagt Toroidal azulenoids p.1/24 Outline 1. Motivation 2. - PowerPoint PPT Presentation

Toroidal azulenoids Nico Van Cleemput Nicolas.VanCleemput@UGent.be Research group CAAGT, Department of Applied Mathematics and Computer Science, Ghent University (Joint work with Gunnar Brinkmann, Olaf Delgado-Friedrichs and Edward Kirby)


  1. Toroidal azulenoids Nico Van Cleemput Nicolas.VanCleemput@UGent.be Research group CAAGT, Department of Applied Mathematics and Computer Science, Ghent University (Joint work with Gunnar Brinkmann, Olaf Delgado-Friedrichs and Edward Kirby) caagt Toroidal azulenoids – p.1/24

  2. Outline 1. Motivation 2. Translation to tiles 3. Tools 4. Methods 5. Results caagt Toroidal azulenoids – p.2/24

  3. Azulenoids Azulene caagt Toroidal azulenoids – p.3/24

  4. Azulenoids 4 n + 2 annulene with a bridging bond if a π -electron migrates towards the five membered ring then in principle two ’aromatic-sextets’ could be formed ⇒ aromatic behaviour might be expected within Huckel theory caagt Toroidal azulenoids – p.3/24

  5. Azulenoids Consistent with this view is that it has a small dipole moment, and does indeed show some aromatic properties, under milder conditions. caagt Toroidal azulenoids – p.3/24

  6. Question We don’t yet know whether and how the electron mobility might manifest itself among azulenes embedded within a fullerene-style network. How many variations of such networks are theoretically possible? Edward Kirby caagt Toroidal azulenoids – p.4/24

  7. Torus caagt Toroidal azulenoids – p.5/24

  8. Torus caagt Toroidal azulenoids – p.5/24

  9. Torus caagt Toroidal azulenoids – p.5/24

  10. Tiling a subdivision of the plane into faces (or tiles) everything is locally finite the intersections of two different tiles are points or lines or are empty. caagt Toroidal azulenoids – p.6/24

  11. Tiling a subdivision of the plane into faces (or tiles) everything is locally finite the intersections of two different tiles are points or lines or are empty. Periodic tiling ⇐ ⇒ up to symmetry there are only a finite set of tiles caagt Toroidal azulenoids – p.6/24

  12. Example tiling caagt Toroidal azulenoids – p.7/24

  13. Example tiling caagt Toroidal azulenoids – p.7/24

  14. Barycentric subdivision For each face: one point For each edge: one point For each vertex: one point ⇒ subdivision consists of triangles caagt Toroidal azulenoids – p.8/24

  15. Chamber system Define Σ = � σ 0 , σ 1 , σ 2 | σ 2 i = 1 � σ 0 : change the green point (vertex). σ 1 : change the red point (edge). σ 2 : change the black point (face). caagt Toroidal azulenoids – p.9/24

  16. Chamber system Define Σ = � σ 0 , σ 1 , σ 2 | σ 2 i = 1 � σ 0 : change the green point (vertex). σ 1 : change the red point (edge). σ 2 : change the black point (face). Chamber system C of T = barycentric subdivision together with Σ caagt Toroidal azulenoids – p.9/24

  17. Delaney/Dress graph The Delaney/Dress graph D of a periodic tiling is the set of equivalence classes of the chambers of the chamber sys- tem of the tiling under the symmetry group, together with the actions of Σ . caagt Toroidal azulenoids – p.10/24

  18. Example Delaney/Dress graph caagt Toroidal azulenoids – p.11/24

  19. Example Delaney/Dress graph caagt Toroidal azulenoids – p.11/24

  20. Example Delaney/Dress graph caagt Toroidal azulenoids – p.11/24

  21. Example Delaney/Dress graph caagt Toroidal azulenoids – p.12/24

  22. Example Delaney/Dress graph caagt Toroidal azulenoids – p.12/24

  23. Example Delaney/Dress graph ⇒ Delaney/Dress graph is not sufficient to distinguish be- tween tilings! caagt Toroidal azulenoids – p.12/24

  24. Delaney/Dress symbol Define functions m ij : D → N m 01 ( d ) is the size of the face of T that belongs to d . m 12 ( d ) is the number of faces that meet in the vertex that belongs to d . caagt Toroidal azulenoids – p.13/24

  25. Delaney/Dress symbol Define functions m ij : D → N m 01 ( d ) is the size of the face of T that belongs to d . m 12 ( d ) is the number of faces that meet in the vertex that belongs to d . Delaney/Dress symbol of the tiling is ( D ; m 01 , m 12 ) caagt Toroidal azulenoids – p.13/24

  26. Example Delaney/Dress symbol caagt Toroidal azulenoids – p.14/24

  27. Example Delaney/Dress symbol m 01 = 4 m 12 = 4 caagt Toroidal azulenoids – p.14/24

  28. Example Delaney/Dress symbol caagt Toroidal azulenoids – p.15/24

  29. Example Delaney/Dress symbol m 01 = 6 m 12 = 3 caagt Toroidal azulenoids – p.15/24

  30. Example Delaney/Dress symbol caagt Toroidal azulenoids – p.16/24

  31. Example Delaney/Dress symbol caagt Toroidal azulenoids – p.16/24

  32. Example Delaney/Dress symbol caagt Toroidal azulenoids – p.16/24

  33. Example Delaney/Dress symbol m 01 m 12 A 4 3 B 8 3 C 8 3 caagt Toroidal azulenoids – p.16/24

  34. Delaney/Dress symbol ( D ; m 01 , m 12 ) is the Delaney/Dress symbol of a periodic tiling of the plane iff. 1. D is finite 2. Σ works transitively on D 3. m 01 is constant on � σ 0 , σ 1 � orbits and ∀ d ∈ D : d ( σ 0 σ 1 ) m 01 ( d ) = d 4. m 12 is constant on � σ 1 , σ 2 � orbits and ∀ d ∈ D : d ( σ 1 σ 2 ) m 12 ( d ) = d 5. ∀ d ∈ D : d ( σ 0 σ 2 ) 2 = d 1 m 12 ( d ) − 1 1 6. � d ∈D ( m 01 ( d ) + 2 ) = 0 caagt Toroidal azulenoids – p.17/24

  35. Refined question How many variations of fullerene-style networks for which there exists a partition of the atoms into azulenes are the- oretically possible, assuming there is only one equivalence class of azulenes? caagt Toroidal azulenoids – p.18/24

  36. Translation Restrictions azulenoid: 1 equivalence class of azulenes every atom part of exactly one azulene caagt Toroidal azulenoids – p.19/24

  37. Translation Restrictions azulenoid: 1 equivalence class of azulenes every atom part of exactly one azulene Restrictions Delaney/Dress symbol: ∃ σ 0 σ 1 orbit O : m 01 ( O ) = 8 ∧ ∀ σ 1 σ 2 orbit V : O ∩ V � = ∅ caagt Toroidal azulenoids – p.19/24

  38. Translation Restrictions azulenoid: 1 equivalence class of azulenes every atom part of exactly one azulene Restrictions Delaney/Dress symbol: ∃ σ 0 σ 1 orbit O : m 01 ( O ) = 8 ∧ ∀ σ 1 σ 2 orbit V : O ∩ V � = ∅ ∀ σ 1 σ 2 orbit V : m 12 ( V ) = 3 caagt Toroidal azulenoids – p.19/24

  39. Translation Restrictions azulenoid: 1 equivalence class of azulenes every atom part of exactly one azulene Restrictions Delaney/Dress symbol: ∃ σ 0 σ 1 orbit O : m 01 ( O ) = 8 ∧ ∀ σ 1 σ 2 orbit V : O ∩ V � = ∅ ∀ σ 1 σ 2 orbit V : m 12 ( V ) = 3 1 m 12 ( d ) − 1 1 � ( m 01 ( d ) + 2) = 0 d ∈D caagt Toroidal azulenoids – p.19/24

  40. Method Octagon and the different vertex orbits caagt Toroidal azulenoids – p.20/24

  41. Method Octagon and the different vertex orbits caagt Toroidal azulenoids – p.20/24

  42. Method Octagon and the different vertex orbits Calculate and assign remaining m 01 values caagt Toroidal azulenoids – p.20/24

  43. Method Octagon and the different vertex orbits Calculate and assign remaining m 01 values Assign remaining σ 0 ’s caagt Toroidal azulenoids – p.20/24

  44. Method Octagon and the different vertex orbits Calculate and assign remaining m 01 values Assign remaining σ 0 ’s Replace octagon with azulene caagt Toroidal azulenoids – p.20/24

  45. Method Octagon and the different vertex orbits Calculate and assign remaining m 01 values Assign remaining σ 0 ’s Replace octagon with azulene caagt Toroidal azulenoids – p.20/24

  46. Visualisation caagt Toroidal azulenoids – p.21/24

  47. Visualisation caagt Toroidal azulenoids – p.21/24

  48. Visualisation caagt Toroidal azulenoids – p.21/24

  49. Results m 01 values # strings # symbols 1 4 4 4 4 4 6 24 24 21 6 2 4 4 4 4 4 8 12 24 42 42 3 4 4 4 4 4 8 16 16 21 48 4 4 4 4 4 4 10 10 20 21 0 5 4 4 4 4 4 12 12 12 7 44 6 4 4 4 4 6 6 8 24 105 0 7 4 4 4 4 6 6 12 12 54 2 8 4 4 4 4 6 8 8 12 105 12 9 4 4 4 4 8 8 8 8 10 160 10 4 4 4 6 6 6 6 12 35 6 11 4 4 4 6 6 6 8 8 70 38 12 4 4 6 6 6 6 6 6 4 25 caagt Toroidal azulenoids – p.22/24

  50. Results 383 symbols of tilings containing octagons caagt Toroidal azulenoids – p.22/24

  51. Results 383 symbols of tilings containing octagons ⇓ 1274 azulenoids caagt Toroidal azulenoids – p.22/24

  52. Translation only one orbit of azulenes under the subgroup of translations or all the azulenes have the same orientation caagt Toroidal azulenoids – p.23/24

  53. Translation only caagt Toroidal azulenoids – p.23/24

  54. End Thanks for your attention! caagt Toroidal azulenoids – p.24/24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend