complete k 3 arcs from quartic curves
play

Complete (k, 3)-arcs from quartic curves Daniele Bartoli (joint - PowerPoint PPT Presentation

Complete (k, 3)-arcs from quartic curves Daniele Bartoli (joint work with Massimo Giulietti and Giovanni Zini) University of Gent (Belgium) ALCOMA 2015 Kloster Banz, March 15 - 20, 2015 Outline ( n , r )-arcs and Coding Theory Algebraic


  1. Complete (k, 3)-arcs from quartic curves Daniele Bartoli (joint work with Massimo Giulietti and Giovanni Zini) University of Gent (Belgium) ALCOMA 2015 Kloster Banz, March 15 - 20, 2015

  2. Outline ( n , r )-arcs and Coding Theory Algebraic constructions of small complete ( n , 3)-arcs Possible developments

  3. Complete arcs Definition (Arc) n points A ⊂ AG ( r , q ) , PG ( r , q ) ⇐ ⇒ no r + 1 of which n-arc are in a hyperplane A �⊂ A ′ A ⇐ ⇒ A ′ ( n + 1) -arc complete

  4. Complete ( n , m )-arcs in projective planes Definition (( n , m )-arc) n points A ⊂ AG (2 , q ) , PG (2 , q ) ⇐ ⇒ no m + 1 of which ( n , m ) -arc are collinear A �⊂ A ′ A ⇐ ⇒ A ′ ( n + 1 , m ) -arc complete

  5. MDS codes Linear code C < F N d Hamming distance q Singleton Bound ⇒ d ≤ n − k + 1 [ n , k , d ] q = Definition (MDS Codes) d = n − k + 1 = ⇒ Maximum Distance Separable (MDS) n-arc MDS [ n , k , d ] q -code ← → in PG ( n − k − 1 , q ) Columns of a ← → points in PG ( n − k − 1 , q ) parity-check matrix

  6. NMDS codes Definition (Singleton defect) ∆( C ) = n − k + 1 − d ∆( C ) = 0 = ⇒ C MDS ∆( C ) = 1 = ⇒ C A(lmost)MDS ∆( C ) = 1 = ⇒ C N(ear)MDS ∆( C ⊥ ) = 1 ( n , 3) -arc ← → NMDS [ n , 3 , d ] q -code in PG (2 , q ) Columns of a ← → parity-check points in PG (2 , q ) matrix

  7. Algebraic constructions Idea of Segre and Lombardo-Radice The points of the arc are chosen, with few exceptions, among the points of a conic or a cubic curve 1 Choose a K ⊂ PG (2 , q ) having a low degree parametrization 2 Prove that K is an arc 3 ∀ P ∈ PG (2 , q ) \ K construct H P algebraic curve which expresses the collinearity condition between P and P 1 , P 2 ∈ K 4 Show that H P is absolutely irreducible for almost all P 5 Use the Hasse-Weil theorem to show that, if q is large enough, then ( x , y ) ∈ H P ( F q ): P 1 ( x ) and P 2 ( y ) collinear with P 6 Extend K with some extra points

  8. Example: Construction of arcs in projective planes K = { ( f ( t ) , g ( t )) | t ∈ F q } ⊂ AG (2 , q )

  9. Example: Construction of arcs in projective planes K = { ( f ( t ) , g ( t )) | t ∈ F q } ⊂ AG (2 , q ) K is an arc if   f ( x ) g ( x ) 1  � = 0 det f ( y ) g ( y ) 1  f ( z ) g ( z ) 1

  10. Example: Construction of arcs in projective planes K = { ( f ( t ) , g ( t )) | t ∈ F q } ⊂ AG (2 , q ) K is an arc if   f ( x ) g ( x ) 1  � = 0 det f ( y ) g ( y ) 1  f ( z ) g ( z ) 1 P = ( a , b ) covered by K if there exist x , y ∈ F q with   a b 1  = 0 det f ( x ) g ( x ) 1  f ( y ) g ( y ) 1

  11. Example: Construction of arcs in projective planes K = { ( f ( t ) , g ( t )) | t ∈ F q } ⊂ AG (2 , q ) K is an arc if   f ( x ) g ( x ) 1  � = 0 det f ( y ) g ( y ) 1  f ( z ) g ( z ) 1 P = ( a , b ) covered by K if there exist x , y ∈ F q with   a b 1  = 0 H P : det f ( x ) g ( x ) 1  f ( y ) g ( y ) 1

  12. Example: Construction of arcs in projective planes K = { ( f ( t ) , g ( t )) | t ∈ F q } ⊂ AG (2 , q ) K is an arc if   f ( x ) g ( x ) 1  � = 0 det f ( y ) g ( y ) 1  f ( z ) g ( z ) 1 P = ( a , b ) covered by K if there exist x , y ∈ F q with   a b 1  = 0 H P : det f ( x ) g ( x ) 1  f ( y ) g ( y ) 1 the algebraic curve H P has an F q -rational point ( x , y ) ( f ( x ) , g ( x )) � = ( f ( y ) , g ( y )), not a pole of x or y

  13. Example: Construction of arcs in projective planes II g ( t ) f ( t ) � �� � � �� � ( L ( t ) + c ) 3 ) K = { ( | t ∈ F q } , − 3 c / ∈ Im ( L ) L ( t ) + c , � �� � P t H P : b + ( L ( x ) + c )( L ( y ) + c ) 2 + ( L ( x ) + c ) 2 ( L ( y ) + c ) − a (( L ( x ) + c ) 2 +( L ( x ) + c )( L ( y ) + t ) + ( L ( y ) + c ) 2 ) = 0

  14. Example: Construction of arcs in projective planes II g ( t ) f ( t ) � �� � � �� � ( L ( t ) + c ) 3 ) K = { ( | t ∈ F q } , − 3 c / ∈ Im ( L ) L ( t ) + c , � �� � P t H P : b + ( L ( x ) + c )( L ( y ) + c ) 2 + ( L ( x ) + c ) 2 ( L ( y ) + c ) − a (( L ( x ) + c ) 2 +( L ( x ) + c )( L ( y ) + t ) + ( L ( y ) + c ) 2 ) = 0 (Sz˝ onyi, 1985) if b � = a 3 H P is absolutely irreducible H P has at least q + 1 − 9 deg( L ) 2 √ q points

  15. Algebraic constructions Idea of Segre and Lombardo-Radice The points of the arc are chosen, with few exceptions, among the points of a conic or a cubic curve 1 q / 2: Segre, Hirschfeld 2 q / 3: Abatangelo, Korchm` aros, Sz˝ onyi, Voloch 3 q / 4: Korchm` aros 4 2 q 9 / 10 : Sz˝ onyi 5 cq 3 / 4 : Sz˝ onyi-Voloch-Anbar-B.-Giulietti-Platoni

  16. Infinite families of complete ( n , r )-arcs, r > 2 F q -rational points of irreducible curve of degree r 2-character sets in PG (2 , q ) r = 3 No other examples than irreducible cubics!

  17. Complete ( n , 3)-arcs from cubic curves Proposition (Hirschfeld-Voloch) E : plane elliptic curve j ( E ) � = 0 q ≥ 121 E is a complete ( n , 3) -arc in PG (2 , q ) Proposition (Giulietti) E : plane elliptic curve |E| even j ( E ) = 0 q = p r , p > 3 , q > 9887 r even or p ≡ 1 mod 3 E is a complete ( n , 3) -arc in PG (2 , q ) ⇒ q − 2 √ q + 1 ≤ |E| ≤ q + 2 √ q + 1 E complete ( n , 3) -arc =

  18. Complete ( n , 3)-arcs UPPER and LOWER BOUNDS A : complete ( n , 3) -arc � 6( q + 1) ≤ |A| ≤ 2 q + 1 Random construction q ≤ 30000 � |A| ≃ 6 q log q

  19. Algebraic constructions of small complete ( n , 3)-arcs Idea of Segre and Lombardo-Radice The points of the arc are chosen, with few exceptions, among the points of a conic or a cubic curve Our Idea The points of the ( n , 3) -arc are chosen, with few exceptions, among the points of an irreducible quartic curve

  20. Small complete ( n , 3)-arcs from quartic curves p : odd prime, p ≡ 2 mod 3 σ = p h ′ , h ′ odd q = p h , h > h ′ , h ′ | h Q = { ( x , x 4 ) | x ∈ F q }

  21. Proposition B = ( v , v 4 ) A = ( u , u 4 ) C = ( w , w 4 ) u 2 + v 2 + w 2 + uv + uw + vw = 0 COLLINEAR ⇐ ⇒ Proposition C = ( w , w 4 ) B = ( v , v 4 ) A = ( u , u 4 ) D = ( t , t 4 ) � u 2 + v 2 + w 2 + uv + uw + vw = 0 COLLINEAR ⇐ ⇒ u + v + w + t = 0

  22. M := { ( a σ − a ) | a ∈ F q } M ≃ F q σ ≤ ( F q , +) K t := { ( v , v 4 ) | v ∈ M + t } , with t / ∈ M K t

  23. M := { ( a σ − a ) | a ∈ F q } M ≃ F q σ ≤ ( F q , +) K t := { ( v , v 4 ) | v ∈ M + t } , with t / ∈ M K t Proposition K t is a ( k , 3) -arc.

  24. Points off Q Proposition � x σ − x + t , ( x σ − x + t ) 4 �  A =  P = ( a , b ) ∈ � y σ − y + t , ( y σ − y + t ) 4 � B =  ∈ K t and AG (2 , q ) \ Q � z σ − z + t , ( z σ − z + t ) 4 � C = B A C P = ( a , b ) COLLINEAR � ( z σ − z ) 2 + ( z σ − z )(( x σ − x ) + ( y σ − y ) + 4 t ) + 4 t ( x σ − x + y σ − y )+  +6 t 2 + ( x σ − x )( y σ − y ) + ( x σ − x ) 2 + ( y σ − y ) 2 = 0          a (( x σ − x ) 2 + ( y σ − y ) 2 + 2 t 2 + 2 t ( x σ − x )+ +2 t ( y σ − y ))( x σ − x + y σ − y + 2 t ) − ( x σ − x + t )( y σ − y + t ) ·    · (( x σ − x ) 2 + ( y σ − y ) 2 + ( x σ − x )( y σ − y ) + 3 t 2      +3 t ( x σ − x + y σ − y )) − b = 0 

  25. H P ( z σ − z ) 2 + ( z σ − z )(( x σ − x ) + ( y σ − y ) + 4 t ) + 4 t ( x σ − x + y σ − y )+  +6 t 2 + ( x σ − x )( y σ − y ) + ( x σ − x ) 2 + ( y σ − y ) 2 = 0        a (( x σ − x ) 2 + ( y σ − y ) 2 + 2 t 2 + 2 t ( x σ − x )+ .   +2 t ( y σ − y ))( x σ − x + y σ − y + 2 t ) − ( x σ − x + t )( y σ − y + t ) ·    · (( x σ − x ) 2 + ( y σ − y ) 2 + ( x σ − x )( y σ − y ) + 3 t 2 + 3 t ( x σ − x + y σ − y )) − b = 0   for almost all P ∈ AG (2 , q ) \ Q the space curve H P is absolutely irreducible and it has genus g ≤ 30 σ 3 − 12 σ 2 − 4 σ + 1

  26. H P ( z σ − z ) 2 + ( z σ − z )(( x σ − x ) + ( y σ − y ) + 4 t ) + 4 t ( x σ − x + y σ − y )+  +6 t 2 + ( x σ − x )( y σ − y ) + ( x σ − x ) 2 + ( y σ − y ) 2 = 0        a (( x σ − x ) 2 + ( y σ − y ) 2 + 2 t 2 + 2 t ( x σ − x )+ .   +2 t ( y σ − y ))( x σ − x + y σ − y + 2 t ) − ( x σ − x + t )( y σ − y + t ) ·    · (( x σ − x ) 2 + ( y σ − y ) 2 + ( x σ − x )( y σ − y ) + 3 t 2 + 3 t ( x σ − x + y σ − y )) − b = 0   for almost all P ∈ AG (2 , q ) \ Q the space curve H P is absolutely irreducible and it has genus g ≤ 30 σ 3 − 12 σ 2 − 4 σ + 1 Theorem q ≥ 3600 σ 6 K t K t is a 3 -arc covering AG (2 , q ) \ Q (except possibly Y = 0 )

  27. Points of Q Problem To find T ⊂ Q K t T is a 3 -arc T contains at least one coset K t T covers all the points of Q \ T

  28. Points of Q Problem To find T ⊂ Q K t T is a 3 -arc T contains at least one coset K t T covers all the points of Q \ T In particular 4 points of T are not collinear every point in Q \ T is collinear with 3 points of T

  29. Points of Q Problem To find T ⊂ Q K t T is a 3 -arc T contains at least one coset K t T covers all the points of Q \ T In particular 4 points of T are not collinear every point in Q \ T is collinear with 3 points of T Solution Use 4 -independent subsets!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend