by the imogaba and aimogaba
play

by the iMOGABA and AiMOGABA (A KVN Key Science Program) Sang-Sung - PowerPoint PPT Presentation

An Interesting Story of Gamma-Ray Bright AGNs by the iMOGABA and AiMOGABA (A KVN Key Science Program) Sang-Sung Lee (KASI) and the iMOGABA team 2018 September 6 East Asia VLBI Workshop Pyeoung Chang :


  1. An Interesting Story of Gamma-Ray Bright AGNs 
 by the iMOGABA and … AiMOGABA 
 (A KVN Key Science Program) Sang-Sung Lee (KASI) and the iMOGABA team 2018 September 6 East Asia VLBI Workshop Pyeoung Chang

  2. 출처: http://server7.wikisky.org/snapshot? M87 (Virgo) img_size=&img_res=&ra=12.5138&de=12.3896&angle=0.0293&projection=tan& rotation=0.0&survey=astrophoto&img_id=905632&width=2160&height=2160 &img_borders=&interpolation=bicubic&jpeg_quality=0.8 Spectrum of NGC 1068 
 http://homework.uoregon.edu/pub/class/321/sspher.html The Discoveries • Discoveries of non-stellar activities – Strong broad emission line in NGC 1068 
 (Fath 1909) – Jet in M87 (Curtis 1918 ): 
 apparently connected with the nucleus 
 by a thin line of matter 


  3. Unified scheme of AGN Blazars… Doppler boosted, violent 
 (Angel & Stockman 80) Graphic courtesy of Marie-Luise Menzel (MPE)

  4. AGNs visible on Gamma-ray sky 75 % are blazars Ajello+17

  5. Scientific Goals • Studying the origins of the gamma-flares – What is the location of the gamma-ray flares? : Down stream the relativistic jets? (e.g., an orphan flare) : much inner region of the jets? (e.g., radio counter part time-lagged) – What cause the gamma-ray flares of AGNs? : A relativistic jet of high energy plasma (e.g., Marscher et al. 2008) : Doppler boosting of synchrotron radiation of the jet (e.g., Dermer 1995) : Inverse Compton scattering by relativistic electrons

  6. Origins of Gamma-ray Flares in AGNs 
 (A KVN Key Science Program) • Project I (Single Dish): MOGABA (Monitoring of Gamma-ray Bright AGNs) – radio polarization light curves after a gamma-ray flare of 32 AGNs – dense monitoring at 22, 43, 86 (129) GHz – weekly monitoring for 3-4 months – Lee et al. 2013, Kang et al. 2015, JKAS, 48, 257 (Case study for 3C 279) • Project II (VLBI): iMOGABA (Interferometric MOGABA) – Monthly VLBI monitoring of the MOGABA sources ( ~34 ) – correlated flux of inner-jet structure after gamma-ray flare – Multi-freq. (22/43/86/129GHz) monitoring – Requirement: 
 accurate amplitude calibration with careful Tsys measurements 
 (antenna gain measurement every hour) – Lee et al. 2016, ApJS, 227, 8 (Project overview and single-epoch results)

  7. Collaborations of our KSP (17 people) including 6 students + 5 postdocs • KASI (Korea) – Do-Young Byun (MOGABA data reduction pipeline) – Jeffrey Hodgson (iMOGABA data reduction pipeline, 3C84) – Sincheol Kang (MOGABA observations/data reduction, iMOGABA data reduction,1156+295) – Jeong-Sook Kim (CygX-3) – Sang-Hyun Kim (MOGABA observations/data reduction, iMOGABA data reduction, CTA102) – Soon-Wook Kim (CygX-3) – Jee Won Lee (iMOGABA data reduction, 0716+714/OJ287) – Sang-Sung Lee (PI) – Kiyoaki Wajima (iMOGABA data reduction, faint AGNs) – Guangyao Zhao (iMOGABA with frequency phase transfer) 
 • Seoul National University (Korea) – Juan-Carlos Algaba-Marcos (iMOGABA data reduction, 1633+382) – Dae-Won Kim (iMOGABA data reduction, BL Lac/1749+096) – Jongho Park (iMOGABA data reduction, 1510-089) – Sascha Trippe (bright AGNs) 
 • Chungbuk National University (Korea) – Sung-Min Yoo (iMOGABA data reduction, 3C 279) 
 • Kogakuin University (Japan) – Motoki Kino (bright AGNs) 
 • MPIfR (Germany) – Jae-Young Kim (iMOGABA data reduction, M87)

  8. 
 
 References • Published (16 SCI papers, since 2015) – First detection of 350 micron polarization of 3C 279 (Lee et al. 2015, ApJL ) – iMOGABA II: Frequency Phase Transfer (Algaba et al., 2015 JKAS, 14 citations ) – Amplitude correction factors of KVN (Lee et al. 2015 JKAS, 14 citations ) – Polarization monitoring of 3C 279 (Kang et al. 2015 JKAS, 7 citations ) – The KVN Pipeline (Hodgson et al. 2016 JKAS, 9 citations ) – Detection of mm polarization IDV of S5 0716+714 (Lee et al. 2016 A&A Letter ) – iMOGABA I: Single-epoch imaging results (Lee et al. 2016 ApJS ) – Proving the gamma-ray IDV in 3C279 (Rani et al. 2017 MNRAS ) – iMOGABA : S5 0716+714 (Lee et al. 2017 ApJ ) – iMOGABA : BL Lac (Dae-Won Kim et al. 2017 JKAS, 3 citations ) – iMOGABA : 1633+382 I (Algaba et al. 2018 ApJ ) : highlights – iMOGABA : FPT2 (Zhao et al. 2018 AJ ) : highlights – iMOGABA : 3C 84 (Hodgson et al. 2018 MNRAS ) : highlights – iMOGABA : M87 (Jae-Young Kim et al. 2018 A&A Letter ) : highlights – iMOGABA : 1633+382 II (Algaba et al. 2018 ApJ ) – iMOGABA : 1749+096 (Dea-Won Kim et al. 2018 MNRAS ) 


  9. 
 
 References • Published (16 SCI papers, since 2015) – First detection of 350 micron polarization of 3C 279 (Lee et al. 2015, ApJL ) – iMOGABA II: Frequency Phase Transfer (Algaba et al., 2015 JKAS, 14 citations ) – Amplitude correction factors of KVN (Lee et al. 2015 JKAS, 14 citations ) – Polarization monitoring of 3C 279 (Kang et al. 2015 JKAS, 7 citations ) Student – The KVN Pipeline (Hodgson et al. 2016 JKAS, 9 citations ) (UST) – Detection of mm polarization IDV of S5 0716+714 (Lee et al. 2016 A&A Letter ) – iMOGABA I: Single-epoch imaging results (Lee et al. 2016 ApJS ) – Proving the gamma-ray IDV in 3C279 (Rani et al. 2017 MNRAS ) – iMOGABA : S5 0716+714 (Lee et al. 2017 ApJ ) – iMOGABA : BL Lac (Dae-Won Kim et al. 2017 JKAS, 3 citations ) Student (SNU) – iMOGABA : 1633+382 I (Algaba et al. 2018 ApJ ) : highlights – iMOGABA : FPT2 (Zhao et al. 2018 AJ ) : highlights – iMOGABA : 3C 84 (Hodgson et al. 2018 MNRAS ) : highlights – iMOGABA : M87 (Jae-Young Kim et al. 2018 A&A Letter ) : highlights Student (SNU) – iMOGABA : 1633+382 II (Algaba et al. 2018 ApJ ) – iMOGABA : 1749+096 (Dae-Won Kim et al. 2018 MNRAS ) 
 Student (SNU)

  10. Upcoming papers • Submitted (1 SCI papers) – iMOGABA : Core-blending effect I (Algaba et al. JKAS special issue 2018 ) 
 • In preparation (11 SCI papers) – iMOGABA : Evaluation of imaging quality (Wajima et al. JKAS ) Student – iMOGABA : 1156+295 (Kang et al. ApJ ) : See the poster by Kang, Sincheol (UST) – iMOGABA : OJ 287 (Lee et al. ApJ ) : See the poster by Lee, Jee Won – iMOGABA : Core-blending effect II (Lee et al.) – iMOGABA : Variability time scales (Lee et al.) Student – iMOGABA : 1510-089 (Park et al. ApJ ) (SNU) – MOGABA : S5 0716+714 (Kang et al. ApJ ) Student – MOGABA : 3C 454.3 (Lee et al. ApJ ) (UST) – MOGABA : Multi-frequency Polarization Survey (MFPOL) (Lee et al. ApJ ) Student – iMOGABA : CTA 102 (Kim et al. ApJ ) (UST) – iMOGABA : 3C 279 (Yoo et al. ApJ ) 
 Student (CNU)

  11. Highlight 1. FPT envies FPT-square Zhao et al. 2018, AJ FPT-square (cf. FPT=Frequency Phase Transfer) – implementing a further phase transfer between two FPT residuals (i.e., calibrating dispersive effect) – Increase the coherence time up to 8 hr (i.e., much higher sensitivity) phase phase solution solution after 
 after 
 FPT FPT-square FPT-square can help to detect/image sources at high (>43 GHz) frequencies – Successfully performed with iMOGABA – Suitable also for high frequency all-sky survey (e.g., MASK)

  12. Hightlight 2. A Sad Orphan Gamma-ray Flare Dae-Won Kim et al. 2017, JKAS We observed BL Lacertae - 2013 Jan - 2016 Mar 
 - a radio loud AGN (< 9 Jy) 
 - gamma-ray bright - two outbursts on 2013/2015 KVN images No radio counter parts - gamma-ray downstream the jet - radio counterparts under a https://fermi.gsfc.nasa.gov/ssc/data/ variability access/lat/msl_lc/source/BL_Lac - variation of Doppler boosting - actually no radio counter part (a sad orphan flare) A sad orphan flare might occur due to inverse Compton scattering by seed photons from e.g., a jet sheath (ring of fire model) 


  13. Hightlight 2. A Sad Orphan Gamma-ray Flare Dae-Won Kim et al. 2017, JKAS We observed BL Lacertae - 2013 Jan - 2016 Mar 
 - a radio loud AGN (< 9 Jy) 
 - gamma-ray bright - two outbursts on 2013/2015 KVN images No radio counter parts - gamma-ray downstream the jet - radio counterparts under a https://fermi.gsfc.nasa.gov/ssc/data/ variability access/lat/msl_lc/source/BL_Lac - variation of Doppler boosting - actually no radio counter part (a sad orphan flare) A sad orphan flare might occur due to inverse Compton scattering by seed photons from e.g., a jet sheath (ring of fire model) 


  14. Highlight 2. A Sad Orphan Gamma-ray Flare Dae-Won Kim et al. 2017, JKAS We observed BL Lacertae - 2013 Jan - 2016 Mar 
 - a radio loud AGN (< 9 Jy) 
 - gamma-ray bright - two outbursts on 2013/2015 No radio counter parts - gamma-ray downstream the jet - radio counterparts under a variability - variation of Doppler boosting - actually no radio counter part (a sad orphan flare) A sad orphan flare might occur due to inverse Compton scattering by seed photons from e.g., a jet sheath (ring of fire model) 


  15. Highlight 3. A Gamma-ray Flare offset from the Radio Emitting Regions Algaba et al. 2018, ApJ We observed 1633+382 - 2012 Mar - 2015 Aug 
 - a radio loud AGN (< 5 Jy) 
 - gamma-ray bright - five outbursts correlated with multi-band Cross correlation - flux at different bands are significantly correlated - gamma-ray leads radio by about 70 days (i.e., 40 pc) - gamma-ray flare offset from radio emitting regions by 40 pc Algaba+ submitted A happy correlated flare might occur in the inner regions of the jet, due to a shock propagating a radio emitting regions.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend