fermi
play

Fermi 2014 10 3 @ - PowerPoint PPT Presentation

2014-09_CTA_FermiDM.pptx Fermi 2014 10 3 @ ( 2014) (


  1. 2014-09_CTA_FermiDM.pptx Fermi ガンマ線衛星による 暗黒物質探査 2014 年 10 月 3 日 @ 東京大学 柏キャンパス ( 高エネルギーガンマ線でみる 極限宇宙 2014) 水野恒史 ( 広島大学 宇宙科学センター ) On behalf of the Fermi-LAT collaboration /30 1 T. Mizuno et al.

  2. 2014-09_CTA_FermiDM.pptx Dark Matter Search with Fermi Large Area Telescope Oct. 3, 2014@Kashiwa (The Extreme Universe viewed in very high-energy  -rays) T. Mizuno (Hiroshima Univ.) On behalf of the Fermi-LAT collaboration /30 2 T. Mizuno et al.

  3. 2014-09_CTA_FermiDM.pptx Dark Matter (DM) Search with  -rays • Gamma-rays may encrypt the DM signal Gamma Ray Flux Particle Physics (measured by Fermi-LAT) (photons per annihilation) DM Distribution (line-of-sight integral) /30 3 T. Mizuno et al.

  4. 2014-09_CTA_FermiDM.pptx Dark Matter (DM) Search with  -rays • Gamma-rays may encrypt the DM signal Gamma Ray Flux Particle Physics (measured by Fermi-LAT) (photons per annihilation) <  v>~3x10 -26 cm 3 s -1 to reproduce the matter density (if DM is a thermal relic) (J-factor) DM Distribution (line-of-sight integral) NFW profile is usually assumed   indirect search of a DM signal is  2 r 1 r / a      r 0 0 0 complementary to direct detection   0 2  r 1 r / a 0 (e.g., distribution of DM) (  0 ~0.3 GeV cm -3 , a 0 ~20 kpc, r 0 =8.5 kpc for the MW) /30 4 T. Mizuno et al.

  5. 2014-09_CTA_FermiDM.pptx Fermi Gamma-ray Space Telescope • Fermi = LAT + GBM • LAT = GeV Gamma-ray Space Telescope (20 MeV ~ >300 GeV; All-Sky Survey ) 2008.06 launch 2008.08 Sci. Operation 3c454.3 Cape Canaveral, 1873 sources Florida Nolan+12 /30 5 T. Mizuno et al.

  6. 2014-09_CTA_FermiDM.pptx Fermi LAT • Pair-conversion telescope (TKR+CAL+ACD) good background rejection due to “clear”  -ray signature – – (also sensitive to CR electrons) • Tracker (TKR): pair conversion, tracking – angular resolution is dominated by multiple scattering below ~GeV • Calorimeter (CAL): Si Tracker 70 m 2 , 228  m pitch – use shower profile to compensate Atwood+09 ~0.9 million channels for the leakage  (Japanese contribution) • Anti-coincidence detector (ACD): – efficiency>99.97% Large Area Telescope (LAT) energy band: 20 MeV to >300 GeV effective area: ~8000 cm 2 (>1 GeV) FOV: >2.4 sr e + e - angular resolution: <1 deg (>1 GeV) energy resolution: ~10% (@1 GeV) CsI Calorimeter Anti-coincidence Detector GBM 8.6 radiation length Segmented scintillator tiles /30 6 T. Mizuno et al.

  7. 2014-09_CTA_FermiDM.pptx Gamma-ray Sky • GeV gamma-ray sky = Galactic Diffuse + astrophysical objects + unresolved sources + others Geminga Vela Geminga Vela Galactic plane Crab 3c454.3 /30 Fermi-LAT 4 year all-sky map 7 T. Mizuno et al.

  8. 2014-09_CTA_FermiDM.pptx DM Search Strategies with  -rays (1) (Figure taken from Pieri+11) Galactic Center: Pros: Good statistics MW halo: Satellites: Cons: confusion, diffuse BG Pros: very good statistics Pros: Low BG and good source id Cons: diffuse BG Cons: low statistics Baltz+08 Spectral lines: Extragalactic: Pros: no astrophysical uncertainty Pros: very good statistics (Smoking gun) Cons: diffuse BG, Cons: low statistics Clusters: astrophysical uncertainties Pros: low BG and good source id Cons: low statistics, astrophysical uncertainties /30 8 T. Mizuno et al.

  9. 2014-09_CTA_FermiDM.pptx DM Search Strategies with  -rays (2) • In short, we search for DM signal in  -rays by utilizing their spatial and/or spectral signatures Galactic Diffuse, DM signal Fermi-LAT data Sources, isotropic (e.g., MW halo)? (  unresolved sources, BG) + = DM signal (e.g., line)? Good understanding of Galactic diffuse emission and the instrument is crucial (Figure taken from Abdo+10) /30 9 T. Mizuno et al.

  10. 2014-09_CTA_FermiDM.pptx DM Search Strategies with  -rays (Figure taken from Pieri+11) Galactic Center: Pros: Good statistics MW halo: Satellites: Cons: confusion, diffuse BG Pros: very good statistics Pros: Low BG and good source id Cons: diffuse BG Cons: low statistics Baltz+08 Spectral lines: Extragalactic: Pros: no astrophysical uncertainty Pros: very good statistics (Smoking gun) Cons: diffuse BG, Cons: low statistics Clusters: astrophysical uncertainties Pros: low BG and good source id Cons: low statistics, astrophysical uncertainties /30 10 T. Mizuno et al.

  11. 2014-09_CTA_FermiDM.pptx [1] Search for a Galactic DM Substructure • In the standard cosmological model, structures form from bottom up. Numerical simulations predict that the MW should be surrounded by smaller structures. • Optically observed Dwarf Spheroidal (dSph) galaxies are the most attractive candidate subhalo objects – relatively nearby – known position and mass (stellar velocity dispersion) – very high M/L ratio (>=100 Msun/Lsun) – low astrophysical gamma-ray background M/L ratio (Wilkinson+06) 1xMsun/Lsun Ursa Minor (Credit:Mischa Schirmer) /30 11 T. Mizuno et al.

  12. 2014-09_CTA_FermiDM.pptx Fermi-LAT Study of dSphs No significant  -ray emission if found to be coincident with any • of the 25 known dSphs Ackermann+14 (CA: Cohen-Tanugi, Conrad, Drlica-Wagner, Llena Garde and Mozaiotta) /30 12 T. Mizuno et al.

  13. 2014-09_CTA_FermiDM.pptx Fermi-LAT Study of dSphs No significant  -ray emission if found to be coincident with any • of the 25 known dSphs Ackermann+14 (CA: Cohen-Tanugi, Conrad, Drlica-Wagner, Llena Garde and Mozaiotta) /30 13 T. Mizuno et al.

  14. 2014-09_CTA_FermiDM.pptx J-Factors of dSphs • 18 dSphs with kinematically determined J-factors • 15 “nonoverlaping” dSphs used for a combined analysis ( ) ( ) ( ) A.Drlica-Wagner DPF 2013 /30 14 T. Mizuno et al.

  15. 2014-09_CTA_FermiDM.pptx Combined Limits by 15 dSphs Ackermann+14 (CA: Cohen-Tanugi, Conrad, Drlica-Wagner, LlenaGarde, Mazziotta) • 4 years of data, 500 MeV- 500 GeV • J-factor uncertainties accounted for • Expected sensitivity calculated from the data: – choose 25 blank-sky locations as a control sample (high Galactic lat. (|b|>30deg), >1deg from 2FGL) – combined analysis on 300 randomly selected Ackermann+11, PRL 107, 241302 sets of blank fields (CA: Cohen-Tanugi, Conrad, Garde) M WIMP >=10 GeV to satisfy <  v>=3x10 -26 cm 3 s -1 Largest excess (TS=8.7) for 25 GeV WIMP to bb /30 15 (global p-value ~ 0.08 or 1.4  ) T. Mizuno et al.

  16. 2014-09_CTA_FermiDM.pptx Synergy with Cherenkov Telescopes (1) • Although not so constraining (yet), ground Cherenkov Telescopes gave limits complementary to Fermi-LAT results Ackermann+14 /30 16 T. Mizuno et al.

  17. 2014-09_CTA_FermiDM.pptx Synergy with Cherenkov Telescopes (2) • Although not so constraining (yet), ground Cherenkov Telescopes gave limits complementary to Fermi-LAT results • CTA is able to exclude (or detect) WIMP of M>=300 GeV • With a factor of 3 improvement of the Fermi-LAT (more exposure, improved response, more dSphs), WIMP mass of 10 GeV ~ >1 TeV will be covered with sensitivity at <  v>~3x10 -26 cm 3 s -1 CTA, MW halo, 100 hr Ackermann+14 (taken from Doro+ 13) /30 17 T. Mizuno et al.

  18. 2014-09_CTA_FermiDM.pptx [2] Extragalactic Gamma-ray Background (EGB) (taken from M. Ackermann’s talk) dedicated event class to obtain “clean”  -rays /30 18 T. Mizuno et al.

  19. 2014-09_CTA_FermiDM.pptx Origin of EGB/IGRB • The EGB may encrypt the signature of the most powerful processes in astrophysics Star forming galaxies, etc. (taken from M. Ackermann’s talk) Blazars contribute 20-100% of the EGB Particles accelerated Annihilation of in Intergalactic shocks Cosmological Dark Matter Total EGB = Isotropic Gamma-Ray Background (IGRB)+resolved sources Markevitch+0 Possible Cosmological WIMP contribution to IGRB 5 /30 19 T. Mizuno et al.

  20. 2014-09_CTA_FermiDM.pptx Systematic Uncertainty from Galactic Diffuse Galactic Diffuse dominates  -ray sky, hence is the most significant • source of uncertainty for EGB/IGRB • Three Diffuse models are considered to gauge uncertainty – ModelA: similar to a model in Ackermann+12 (baseline model) – ModelB: add population of electron-only sources near GC (better match to IC) – ModelC: non-uniform CR diffusion rate (better reproduce flat emissivity) • Variation of diffuse model parameters (e.g., halo size) also considered (Model B – Model A) / Model A (Model C – Model A) / Model A Preliminary (just accepted) (Fermi-LAT Collaboration, Ackermann, Bechtol) /30 20 T. Mizuno et al.

  21. 2014-09_CTA_FermiDM.pptx The Fermi EGB/IGRB • Updated LAT measurement of IGRB – 200 MeV-100 GeV (Abdo+10) -> 100 MeV – 820 MeV • Significant high-energy cutoff feature in IGRB – Consistent with simple source population attenuated by EBL • Roughly half of total EGB intensity above 100 GeV now resolved into individual sources • Then, how about constraints on DM? Preliminary (just accepted) /30 (Fermi-LAT Collaboration, Ackermann, Bechtol) 21 T. Mizuno et al.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend