brand evn
play

BRAND EVN BROADBAND RECEIVER - A TECHNOLOGICAL CHALLENGE - Gino - PowerPoint PPT Presentation

Yebes Observatory BRAND EVN BROADBAND RECEIVER - A TECHNOLOGICAL CHALLENGE - Gino Tuccari on behalf of the BRAND team G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020 WHAT IS A BRAND


  1. Yebes Observatory BRAND EVN BROADBAND RECEIVER - A TECHNOLOGICAL CHALLENGE - Gino Tuccari on behalf of the BRAND team G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  2. WHAT IS A BRAND RECEIVER Max-Planck-Institut für Radioastronomie “Digital” VLBI -receiver for the EVN (and other) telescopes  Frequency range: 1.5 - 15.5 GHz  Direct sampling – no down-conversion  Sampling by a single sampler chip  Data transport from receiver to backend via optical fibers  Will bypass IF limitations of legacy antennas  Will allow multi-wavelength VLBI for astronomy  Fringe-fitting over whole band necessary (RadioNet JRA RINGS)  Will extend VGOS band G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  3. BRAND JRA IN RADIONET Max-Planck-Institut für Radioastronomie  BRAND EVN is a Joint Research Activity (JRA) in H2020 Radionet  Contract with the EU No: 730562  Budget sponsored by the EU: ~1.5 M € plus in-kind contributions by partners:  MPIfR, INAF/Noto, OSO, UAH/IGN, ASTRON, VUC  Project started: January 2017  Project ends: December 2020  Prototype BRAND receiver for Effelsberg prime focus  Research for secondary focus feeds  Suitability study for other EVN antennas G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  4. EVN FREQUENCIES Max-Planck-Institut für Radioastronomie G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  5. EVN FREQUENCIES VS. BRAND Max-Planck-Institut für Radioastronomie G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  6. THE BRAND TEAM Max-Planck-Institut für Radioastronomie W. Alef MPIfR Bonn, Project Manager, VLBI test observations Germany G. Tuccari INAF Noto & Project Engineer, BRAND architecture, HTSC filters, MPIfR Bonn backend design, firmware, secondary focus study J. Flygare, L. Pettersson OSO, Sweden Feed Horn, measurements of filter plus LNA J.A. López-Pérez, F. Tercero, IGN/UAH, Spain LNAs, RFI, measurements of filter plus LNA, analogue I. Malo, I. López-Fernández, polarisation conversion C. Diez C. Kasemann, M. Nalbach MPIfR Bonn, Dewar, frontend integration, integration in Effelsberg tel. Germany M. Wunderlich, S. MPIfR Bonn, Sampler & processing board layout, firmware, software, Dornbusch, A. Felke, H. Germany recording, correlation Rottmann J. Hargreaves, G. ASTRON, Digital polarisation conversion, software Schonderbeek, R. de Wilde Netherlands G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  7. BRAND PROJECT STRUCTURE Max-Planck-Institut für Radioastronomie Radionet board Gino Tuccari Walter Alef Project engineer Project manager Workpackge structure 6.1 Feasibility 6.2 Frontend 6.3 Backend 6.4 Software 6.5 Integration survey (UAH-IGN) Primary focus Sampler (INAF, Control Integration (all) • • • • feed (OSO) MPIfR) (MPIfR, INAF) Lab tests (all) • HTSC filters (INAF) • FPGA (INAF, MPIfR) Recording Telescope test • • • LNA (UAH-IGN) • Firmware (INAF, (MPIfR) (all) • Cryostat MPIfR, ASTRON) Correlation • Study of • &Integration Integration (MPIfR) secondary focus • (MPIfR) (INAF,MPIfR) feed G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  8. STATUS FEED HORN Max-Planck-Institut für Radioastronomie Feed horn designed by J. Flygare, M. Pantaleev, OSO  Solution found for Effelsberg: QRFH feed with dielectric inset  Antenna parameters:  Opening angle 160 °  f/D = 0.3  Feed characteristics (over whole band):  average aperture efficiency of 50%  input reflection better than -10 dB  Feed manufactured and measured  Ongoing: Measure filter + amplifier  G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  9. STATUS FEED HORN Max-Planck-Institut für Radioastronomie G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  10. FEED HORN: SEFD & EFFICIENCY Max-Planck-Institut für Radioastronomie G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  11. MANUFACTURED FEED HORN Max-Planck-Institut für Radioastronomie G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  12. STATUS: HTSC FILTERS Max-Planck-Institut für Radioastronomie  High Temperature Superconductor Filters, desired:  a high pass to cut below 1.5 GHz  2 notches for strongest RFI → (1.8 GHz, 2.2 GHz)  A direction coupler for phase-cal & calibration  Realized in 3 separate devices  LNA + HTSC filters + coupler measured at Onsala and Yebes

  13. STATUS: LNA Max-Planck-Institut für Radioastronomie Best solution for extreme bandwidth found:  Balanced amplifier with 2 hybrids and 2 LNAs  0 20 Single LNA Bal. 2-14 GHz Single LNA -5 Bal. 1.5-15.5 GHz 7 st Input Return Loss (dB) Bal. 2-14 GHz Bal. 1.5-15.5 GHz 5 st Bal. 1.5-15.5 GHz 7 st 15 -10 Bal. 1.5-15.5 GHz 5 st -15 Noise (K) -20 10 -25 -30 5 -35 0 -40 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 Frequency (GHz) Frequency (GHz) G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  14. MEASUREMENTS OF FILTERS + LNA Max-Planck-Institut für Radioastronomie High noise above 11.5 GHz due to coupler G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  15. MEASUREMENTS OF FILTERS + LNA Max-Planck-Institut für Radioastronomie G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  16. STATUS: POLARIZATION Max-Planck-Institut für Radioastronomie Linear to circular polarization conversion can be achieved using 3dB/90º hybrid  (same hybrid as for balanced LNA) Average noise penalty across the band < 2.5 Kelvin  Yebes development for BRAND and VGOS  LHCP H 3dB Feed 90º V RHCP Temp = 15K G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  17. DIGITAL FRONTEND Max-Planck-Institut für Radioastronomie  Sampler can process 128 GSps (2 x 56 GSps or 4 x 28 GSps)  Band formation of sampler output by FPGA Mode 1 Mode 2 FPGA Sampler (4 x 28 GSps) Sampler (2x56 GSps) 1.5 – 14.0 FPGA 1.5 – 15.5 To backend To backend 14.0 – 15.5 48 lanes 64 fibres FPGA 96 lanes 64 fibres FPGA 1.5 – 14.0 FPGA 1.5 – 15.5 14.0 – 15.5 FPGA G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  18. DIGITAL RECEIVER -CONT Max-Planck-Institut für Radioastronomie Mode 2 • Sampling on 4 ports with 28 GSps • Avoids extreme sampling clock in FPGAs • Requires splitting of analogue signal into • 1.5 – 14.0 GHz • 14.0 -15.5 GHz • Very good filters are required to minimize aliasing effects at 14 GHz Mode 1 Hardware can be changed to with moderate effort • 1.5 – 15.5 GHz • No filters are required to minimize aliasing effects at 14 GHz G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  19. BRAND BLOCK DIAGRAM Max-Planck-Institut für Radioastronomie frontend backend G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  20. SIGNAL PROCESSING IN RECEIVER Max-Planck-Institut für Radioastronomie • Receiver output: digital signal via optical fiber • Strong shielding is required to avoid ‚self - inflicted‘ RFI (> 120 dB) • Good temperature management is needed to get rid of the resulting heat G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  21. STATUS: DIGITAL FRONTEND Max-Planck-Institut für Radioastronomie The samplers were procured and tested successfully  Purchase of an evaluation sampler board  Used for firmware development  The final design of the sampling/processing board has started   Will handle 2 polarizations and full bandwidth  1 sampler w. 4 inputs @14GHz, 4 Xilinx Kintec Ultrascale FPGAs  2x 0 – 14GHz, 2x 14 – 15.5 GHz in 2 nd Nyquist zone  2x 0 – 15.5GHz in 1 st Nyquist zone  PCB will work in the microwave regime: Input is ~900 Gb/s G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  22. BLOCK DIAGRAM DIGITAL FRONTEND “ DIFREND ” Max-Planck-Institut für Radioastronomie G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

  23. DIFREND : DIGITAL FRONT-END BOARD “ COREAGLE ” Max-Planck-Institut für Radioastronomie Input: 4 x 14 GHz or 2 x 28 GHz Sampling: (today) 8-bit @28/56 GHz 1 Tbps to FPGAs (Preliminary 8-bit @96/128 GHz 3.192/4.096 Tbps to FPGAs) Output from FPGAs: 64 x 10 Gbps to accomplish DBBC3 digital input G. Tuccari, "RadioNet Workshop: Future Trends in Radio Astronomy Instrumentation, September 21-22 2020

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend