boundary correlation functions with a hidden quantum group
play

Boundary correlation functions with a hidden quantum group Kalle - PowerPoint PPT Presentation

Boundary correlation functions with a hidden quantum group Kalle Kytl kalle.kytola@aalto.fi Department of Mathematics and Systems Analysis, Aalto University joint work with Eveliina Peltola (Univ. Helsinki) Niko Jokela (Univ. Helsinki)


  1. Properties of SLE random fractal curve, dim Hausdorff ( γ ) = 1 + κ 8 for κ ≤ 8 [Beffara 2008] ✞ ☎ ✞ ☎ 4 < κ < 8 0 < κ ≤ 4 ✞ ☎ ✝ ✆ 8 ≤ κ ✝ ✆ ✝ ✆ non-self-crossing curve simple curve random Peano curve touches boundary on a doesn’t touch random Cantor set boundary Correlation functions with hidden quantum group 1. Conformally invariant random curves Kalle Kytölä — Florence, May 2015

  2. Properties of SLE random fractal curve, dim Hausdorff ( γ ) = 1 + κ 8 for κ ≤ 8 [Beffara 2008] ✞ ☎ ✞ ☎ 4 < κ < 8 0 < κ ≤ 4 ✞ ☎ ✝ ✆ 8 ≤ κ ✝ ✆ ✝ ✆ non-self-crossing curve simple curve random Peano curve touches boundary on a doesn’t touch in this talk κ < 8 random Cantor set boundary Correlation functions with hidden quantum group 1. Conformally invariant random curves Kalle Kytölä — Florence, May 2015

  3. Generalizing the Dobrushin boundary conditions Critical Ising model with Dobrushin boundary conditions [simulation and picture by Eveliina Peltola] Correlation functions with hidden quantum group 1. Conformally invariant random curves Kalle Kytölä — Florence, May 2015

  4. Generalizing the Dobrushin boundary conditions Critical Ising model with alternating boundary conditions [simulation and picture by Eveliina Peltola] Correlation functions with hidden quantum group 1. Conformally invariant random curves Kalle Kytölä — Florence, May 2015

  5. Classification problem of multiple SLEs · · · a 3 Random curves ( γ ( i ) ) N i = 1 in domain D connecting boundary D a 2 points a 1 , a 2 , . . . , a 2 N a 2 N a 1 · · · ✞ ☎ law P D ; a 1 ,..., a 2 N [Dubédat 2007] ✝ ✆ [Bauer & Bernard & K. 2005] Can we give a classification? ◮ Conformal invariance ◮ Domain Markov property (w.r.t. all initial segments) - initial segments absolutely continuous w.r.t. chordal SLE κ ! Convex set of multiple-SLE κ ’s ( P D ; a 1 ,..., a 2 N ) Correlation functions with hidden quantum group 1. Conformally invariant random curves Kalle Kytölä — Florence, May 2015

  6. 2. M ULTIPLE S CHRAMM -L OEWNER E VOLUTIONS GROWTH PROCESSES Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  7. Overview of classification of multiple SLEs local multiple SLEs Möbius covariant with curves starting from ← → positive solutions Z 2 N boundary points to a system of PDEs [pictures by Eveliina Peltola] Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  8. Overview of classification of multiple SLEs local multiple SLEs Möbius covariant with curves starting from ← → positive solutions Z 2 N boundary points to a system of PDEs vector space of solutions convex set of probability measures (finite dimensional) (finite dimensional) [pictures by Eveliina Peltola] Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  9. Overview of classification of multiple SLEs local multiple SLEs Möbius covariant with curves starting from ← → positive solutions Z 2 N boundary points to a system of PDEs vector space of solutions convex set of probability measures (finite dimensional) (finite dimensional) extremal points: deterministic connectivity pattern (a planar pair partition α ∈ PPP N ) [pictures by Eveliina Peltola] Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  10. Overview of classification of multiple SLEs local multiple SLEs Möbius covariant with curves starting from ← → positive solutions Z 2 N boundary points to a system of PDEs vector space of solutions convex set of probability measures (finite dimensional) (finite dimensional) extremal points: deterministic connectivity pattern (a planar pair partition α ∈ PPP N ) 1 � 2 N � PPP = � N ∈ N PPP N , # PPP N = C N = N + 1 N Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  11. Overview of classification of multiple SLEs local multiple SLEs Möbius covariant with curves starting from ← → positive solutions Z 2 N boundary points to a system of PDEs vector space of solutions convex set of probability measures (finite dimensional) (finite dimensional) dim = C N [Flores & Kleban 2014] extremal points: deterministic connectivity pattern (a planar pair partition α ∈ PPP N ) 1 � 2 N � PPP = � N ∈ N PPP N , # PPP N = C N = N + 1 N Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  12. Overview of classification of multiple SLEs local multiple SLEs Möbius covariant with curves starting from ← → positive solutions Z 2 N boundary points to a system of PDEs vector space of solutions convex set of probability measures (finite dimensional) (finite dimensional) dim = C N [Flores & Kleban 2014] extremal points: deterministic solutions Z α with particular connectivity pattern (a planar pair asymptotic behavior partition α ∈ PPP N ) 1 � 2 N � PPP = � N ∈ N PPP N , # PPP N = C N = N + 1 N Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  13. Role of the partition function Local multiple SLE κ classification: H Z ”partition function“ defined on � � X 2 N = x 1 < x 2 < · · · < x 2 N x 1 x 2 x 3 x 4 x 5 x 6 Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  14. Role of the partition function Local multiple SLE κ classification: H Z ”partition function“ defined on � � X 2 N = x 1 < x 2 < · · · < x 2 N ( h = h 1 , 2 = 6 − κ 2 κ ) x 1 x 2 x 3 x 4 x 5 x 6 Z specifies Girsanov transforms w.r.t. chordal SLE κ : k � = j g ′ ( x k ) h × Z d ( j :th curve ) d ( chordal SLE κ ) ∝ � � g ( x 1 ) , . . . , g ( tip ) , . . . , g ( x 2 N )) . where g : H \ ( j :th curve ) → H is conformal s.t. g ( z ) = z + o ( 1 ) . Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  15. Role of the partition function Local multiple SLE κ classification: H Z ”partition function“ defined on � � X 2 N = x 1 < x 2 < · · · < x 2 N ( h = h 1 , 2 = 6 − κ 2 κ ) x 1 x 2 x 3 x 4 x 5 x 6 (PDE) D j Z = 0 for all j = 1 , . . . , 2 N , where � � ∂ 2 D j = κ 2 ∂ 2 h j + � ∂ x i − . i � = j x i − x j 2 ∂ x 2 ( x i − x j ) 2 Z specifies Girsanov transforms w.r.t. chordal SLE κ : k � = j g ′ ( x k ) h × Z d ( j :th curve ) d ( chordal SLE κ ) ∝ � � g ( x 1 ) , . . . , g ( tip ) , . . . , g ( x 2 N )) . where g : H \ ( j :th curve ) → H is conformal s.t. g ( z ) = z + o ( 1 ) . Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  16. Role of the partition function Local multiple SLE κ classification: H Z ”partition function“ defined on � � X 2 N = x 1 < x 2 < · · · < x 2 N ( h = h 1 , 2 = 6 − κ 2 κ ) x 1 x 2 x 3 x 4 x 5 x 6 (PDE) D j Z = 0 for all j = 1 , . . . , 2 N , where � � ∂ 2 D j = κ 2 ∂ 2 h j + � ∂ x i − . i � = j x i − x j 2 ∂ x 2 ( x i − x j ) 2 (COV) For µ : H → H Möbius s.t. µ ( x 1 ) < · · · < µ ( x 2 N ) we have j = 1 µ ′ ( x j ) h × Z = � 2 N � � � � Z x 1 , . . . , x 2 N µ ( x 1 ) , . . . , µ ( x 2 N ) . Z specifies Girsanov transforms w.r.t. chordal SLE κ : k � = j g ′ ( x k ) h × Z d ( j :th curve ) d ( chordal SLE κ ) ∝ � � g ( x 1 ) , . . . , g ( tip ) , . . . , g ( x 2 N )) . where g : H \ ( j :th curve ) → H is conformal s.t. g ( z ) = z + o ( 1 ) . Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  17. Collapsing marked points Suppose Z ( x 1 ,..., x 2 N ) lim x j , x j + 1 → ξ ( x j + 1 − x j ) − 2 h = ˆ 1 2 3 4 5 6 7 8 Z ( x 1 , . . . , x j − 1 , x j + 2 , . . . , x 2 N ) . Then the law of the curves other than j , j + 1 under local 2 N -SLE κ defined by Z tends to the local ( 2 N − 2 ) -SLE κ defined 1 2 3 4 5 6 by ˆ Z as x j , x j + 1 → ξ . For pure partition functions Z α , α ∈ PPP, thus require � Z α/ { j , j + 1 } if { j , j + 1 } ∈ α Z α (ASY) lim ( x j + 1 − x j ) − 2 h = 0 if { j , j + 1 } / ∈ α x j , x j + 1 → ξ Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  18. Multiple SLEs pure partition function problem � � Z α α ∈ PPP � � for α ∈ PPP N , function Z α on X 2 N = x 1 < x 2 < · · · < x 2 N s.t. ∂ 2 D j = κ 2 ∂ 2 h � � (PDE) D j Z α = 0 � − where + ∂ x 2 ( x i − x j ) 2 2 x i − x j ∂ x i j i � = j 2 N (COV) Z � µ ′ ( x j ) h ×Z � � � � x 1 , . . . , x 2 N = µ ( x 1 ) , . . . , µ ( x 2 N ) j = 1 � Z α Z α/ { j , j + 1 } if { j , j + 1 } ∈ α (ASY) lim ( x j + 1 − x j ) − 2 h = if { j , j + 1 } / ∈ α x j , x j + 1 → ξ 0 Correlation functions with hidden quantum group 2. Local multiple SLEs Kalle Kytölä — Florence, May 2015

  19. 3. S OLUTION OF PURE PARTITION FUNCTIONS BY A HIDDEN QUANTUM GROUP Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  20. Overview of the quantum group method Correspondence: vectors in an n -fold tensor product representation ← → functions of n variables of a quantum group highest weight vectors ← → solutions to partial of subrepresentations differential equations vectors in the ← → Möbius covariant trivial subrepresentation functions ← → prescribed projections prescribed asymptotic to subrepresentations behavior Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  21. Idea: Integral solutions to PDEs How to solve the PDEs? ( D j Z )( x 1 , . . . , x 2 N ) = 0, � � ∂ 2 where D j = κ 2 ∂ 2 h j + � ∂ x i − . i � = j 2 ∂ x 2 x i − x j ( x i − x j ) 2 Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  22. Idea: Integral solutions to PDEs How to solve the PDEs? ( D j Z )( x 1 , . . . , x 2 N ) = 0, � � ∂ 2 where D j = κ 2 ∂ 2 h j + � ∂ x i − . i � = j 2 ∂ x 2 x i − x j ( x i − x j ) 2 � f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) d w 1 · · · d w ℓ ? Z ( x 1 , . . . , x 2 N ) = Γ Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  23. Idea: Integral solutions to PDEs How to solve the PDEs? ( D j Z )( x 1 , . . . , x 2 N ) = 0, � � ∂ 2 where D j = κ 2 ∂ 2 h j + � ∂ x i − . i � = j 2 ∂ x 2 x i − x j ( x i − x j ) 2 � f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) d w 1 · · · d w ℓ ? Z ( x 1 , . . . , x 2 N ) = Γ ◮ find appropriate f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  24. Idea: Integral solutions to PDEs How to solve the PDEs? ( D j Z )( x 1 , . . . , x 2 N ) = 0, � � ∂ 2 where D j = κ 2 ∂ 2 h j + � ∂ x i − . i � = j 2 ∂ x 2 x i − x j ( x i − x j ) 2 � f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) d w 1 · · · d w ℓ ? Z ( x 1 , . . . , x 2 N ) = Γ ◮ find appropriate f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) ◮ ( D j f ) d w 1 · · · d w ℓ is an exact ℓ -form Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  25. Idea: Integral solutions to PDEs How to solve the PDEs? ( D j Z )( x 1 , . . . , x 2 N ) = 0, � � ∂ 2 where D j = κ 2 ∂ 2 h j + � ∂ x i − . i � = j 2 ∂ x 2 x i − x j ( x i − x j ) 2 � f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) d w 1 · · · d w ℓ ? Z ( x 1 , . . . , x 2 N ) = Γ ◮ find appropriate f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) ◮ ( D j f ) d w 1 · · · d w ℓ is an exact ℓ -form ◮ if ∂ Γ = ∅ , then the integral Z solves ( D j Z )( z ) = 0 Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  26. Idea: Integral solutions to PDEs How to solve the PDEs? ( D j Z )( x 1 , . . . , x 2 N ) = 0, � � ∂ 2 where D j = κ 2 ∂ 2 h j + � ∂ x i − . i � = j 2 ∂ x 2 x i − x j ( x i − x j ) 2 � f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) d w 1 · · · d w ℓ ? Z ( x 1 , . . . , x 2 N ) = Γ ◮ find appropriate f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) [Dotsenko-Fateev 1984] − 4 2 8 ◮ f = � κ × � κ × � i < j ( x j − x i ) i , r ( w r − x i ) r < s ( w s − w r ) κ ◮ ( D j f ) d w 1 · · · d w ℓ is an exact ℓ -form ◮ if ∂ Γ = ∅ , then the integral Z solves ( D j Z )( z ) = 0 Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  27. Idea: Integral solutions to PDEs How to solve the PDEs? ( D j Z )( x 1 , . . . , x 2 N ) = 0, � � ∂ 2 where D j = κ 2 ∂ 2 h j + � ∂ x i − . i � = j 2 ∂ x 2 x i − x j ( x i − x j ) 2 � f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) d w 1 · · · d w ℓ ? Z ( x 1 , . . . , x 2 N ) = Γ ◮ find appropriate f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) [Dotsenko-Fateev 1984] − 4 2 8 ◮ f = � κ × � κ × � i < j ( x j − x i ) i , r ( w r − x i ) r < s ( w s − w r ) κ ◮ ( D j f ) d w 1 · · · d w ℓ is an exact ℓ -form ◮ if ∂ Γ = ∅ , then the integral Z solves ( D j Z )( z ) = 0 ◮ find appropriate Γ to solve PDEs with boundary conditions? Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  28. Idea: Integral solutions to PDEs How to solve the PDEs? ( D j Z )( x 1 , . . . , x 2 N ) = 0, � � ∂ 2 where D j = κ 2 ∂ 2 h j + � ∂ x i − . i � = j 2 ∂ x 2 x i − x j ( x i − x j ) 2 � f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) d w 1 · · · d w ℓ ? Z ( x 1 , . . . , x 2 N ) = Γ ◮ find appropriate f ( x 1 , . . . , x 2 N ; w 1 , . . . , w ℓ ) [Dotsenko-Fateev 1984] − 4 2 8 ◮ f = � κ × � κ × � i < j ( x j − x i ) i , r ( w r − x i ) r < s ( w s − w r ) κ ◮ ( D j f ) d w 1 · · · d w ℓ is an exact ℓ -form ◮ if ∂ Γ = ∅ , then the integral Z solves ( D j Z )( z ) = 0 ◮ find appropriate Γ to solve PDEs with boundary conditions? quantum group U q ( sl 2 ) acts on Γ [Felder & Wieczerkowski 1991, Peltola & K. 2014] Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  29. The quantum group and its representations Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  30. The quantum group and its representations q = e i π 4 /κ (assume κ / ∈ Q ) Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  31. The quantum group and its representations q = e i π 4 /κ (assume κ / ∈ Q ) ◮ Algebra U q ( sl 2 ) : gen. E , F , K , K − 1 and q -Chevalley rel. Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  32. The quantum group and its representations q = e i π 4 /κ (assume κ / ∈ Q ) ◮ Algebra U q ( sl 2 ) : gen. E , F , K , K − 1 and q -Chevalley rel. KK − 1 = K − 1 K = 1 KE = q 2 EK , KF = q − 2 FK , 1 � K − K − 1 � EF − FE = q − q − 1 Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  33. The quantum group and its representations q = e i π 4 /κ (assume κ / ∈ Q ) ◮ Algebra U q ( sl 2 ) : gen. E , F , K , K − 1 and q -Chevalley rel. KK − 1 = K − 1 K = 1 KE = q 2 EK , KF = q − 2 FK , 1 � K − K − 1 � EF − FE = q − q − 1 ◮ Irreducible rep. M d of dimension d : basis e 0 , e 1 , . . . , e d − 1 Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  34. The quantum group and its representations q = e i π 4 /κ (assume κ / ∈ Q ) ◮ Algebra U q ( sl 2 ) : gen. E , F , K , K − 1 and q -Chevalley rel. KK − 1 = K − 1 K = 1 KE = q 2 EK , KF = q − 2 FK , 1 � K − K − 1 � EF − FE = q − q − 1 ◮ Irreducible rep. M d of dimension d : basis e 0 , e 1 , . . . , e d − 1 K . e j = q d − 1 − 2 j e j , F . e j = e j + 1 , E . e j = [ j ] [ d − j ] e j − 1 where [ n ] = q n − q − n q − q − 1 are ” q -integers“ Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  35. The quantum group and its representations q = e i π 4 /κ (assume κ / ∈ Q ) ◮ Algebra U q ( sl 2 ) : gen. E , F , K , K − 1 and q -Chevalley rel. KK − 1 = K − 1 K = 1 KE = q 2 EK , KF = q − 2 FK , 1 � K − K − 1 � EF − FE = q − q − 1 ◮ Irreducible rep. M d of dimension d : basis e 0 , e 1 , . . . , e d − 1 K . e j = q d − 1 − 2 j e j , F . e j = e j + 1 , E . e j = [ j ] [ d − j ] e j − 1 where [ n ] = q n − q − n q − q − 1 are ” q -integers“ ◮ Tensor products of representations: for v ⊗ w ∈ V ⊗ W set Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  36. The quantum group and its representations q = e i π 4 /κ (assume κ / ∈ Q ) ◮ Algebra U q ( sl 2 ) : gen. E , F , K , K − 1 and q -Chevalley rel. KK − 1 = K − 1 K = 1 KE = q 2 EK , KF = q − 2 FK , 1 � K − K − 1 � EF − FE = q − q − 1 ◮ Irreducible rep. M d of dimension d : basis e 0 , e 1 , . . . , e d − 1 K . e j = q d − 1 − 2 j e j , F . e j = e j + 1 , E . e j = [ j ] [ d − j ] e j − 1 where [ n ] = q n − q − n q − q − 1 are ” q -integers“ ◮ Tensor products of representations: for v ⊗ w ∈ V ⊗ W set K . ( v ⊗ w ) = K . v ⊗ K . w , E . ( v ⊗ w ) = E . v ⊗ K . w + v ⊗ E . w , F . ( v ⊗ w ) = F . v ⊗ w + K − 1 . v ⊗ F . w Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  37. The quantum group and its representations q = e i π 4 /κ (assume κ / ∈ Q ) ◮ Algebra U q ( sl 2 ) : gen. E , F , K , K − 1 and q -Chevalley rel. KK − 1 = K − 1 K = 1 KE = q 2 EK , KF = q − 2 FK , 1 � K − K − 1 � EF − FE = q − q − 1 ◮ Irreducible rep. M d of dimension d : basis e 0 , e 1 , . . . , e d − 1 K . e j = q d − 1 − 2 j e j , F . e j = e j + 1 , E . e j = [ j ] [ d − j ] e j − 1 where [ n ] = q n − q − n q − q − 1 are ” q -integers“ ◮ Tensor products of representations: for v ⊗ w ∈ V ⊗ W set K . ( v ⊗ w ) = K . v ⊗ K . w , E . ( v ⊗ w ) = E . v ⊗ K . w + v ⊗ E . w , F . ( v ⊗ w ) = F . v ⊗ w + K − 1 . v ⊗ F . w ◮ Semisimple tensor products of the irreps: Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  38. The quantum group and its representations q = e i π 4 /κ (assume κ / ∈ Q ) ◮ Algebra U q ( sl 2 ) : gen. E , F , K , K − 1 and q -Chevalley rel. KK − 1 = K − 1 K = 1 KE = q 2 EK , KF = q − 2 FK , 1 � K − K − 1 � EF − FE = q − q − 1 ◮ Irreducible rep. M d of dimension d : basis e 0 , e 1 , . . . , e d − 1 K . e j = q d − 1 − 2 j e j , F . e j = e j + 1 , E . e j = [ j ] [ d − j ] e j − 1 where [ n ] = q n − q − n q − q − 1 are ” q -integers“ ◮ Tensor products of representations: for v ⊗ w ∈ V ⊗ W set K . ( v ⊗ w ) = K . v ⊗ K . w , E . ( v ⊗ w ) = E . v ⊗ K . w + v ⊗ E . w , F . ( v ⊗ w ) = F . v ⊗ w + K − 1 . v ⊗ F . w ◮ Semisimple tensor products of the irreps: M d 2 ⊗ M d 1 ∼ = M d 1 + d 2 − 1 ⊕ M d 1 + d 2 − 3 ⊕ · · · ⊕ M | d 1 − d 2 | + 1 Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  39. The correspondence theorem (special case) κ ∈ ( 0 , 8 ) \ Q , q = e i π 4 /κ Theorem (K. & Peltola) F ( x 0 ) : M ⊗ 2 N → { functions on X ( x 0 ) − 2 N } 2 Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  40. The correspondence theorem (special case) ◮ X ( x 0 ) x 0 X ( x 0 ) 2 N = { ( x j ) 2 N � x 0 < x 1 < · · · < x 2 N } , � X 2 N = � j = 1 2 N κ ∈ ( 0 , 8 ) \ Q , q = e i π 4 /κ Theorem (K. & Peltola) F ( x 0 ) : M ⊗ 2 N → { functions on X ( x 0 ) − 2 N } 2 Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  41. The correspondence theorem (special case) ◮ X ( x 0 ) x 0 X ( x 0 ) 2 N = { ( x j ) 2 N � x 0 < x 1 < · · · < x 2 N } , � X 2 N = � j = 1 2 N κ ∈ ( 0 , 8 ) \ Q , q = e i π 4 /κ Theorem (K. & Peltola) F ( x 0 ) : M ⊗ 2 N → { functions on X ( x 0 ) − 2 N } 2 ( X ) If E . v = 0, then F ( x 0 ) [ v ]: X ( x 0 ) → C is independent of x 0 , n thus defines a function F [ v ]: X 2 N → C . Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  42. The correspondence theorem (special case) ◮ X ( x 0 ) x 0 X ( x 0 ) 2 N = { ( x j ) 2 N � x 0 < x 1 < · · · < x 2 N } , � X 2 N = � j = 1 2 N κ ∈ ( 0 , 8 ) \ Q , q = e i π 4 /κ Theorem (K. & Peltola) F ( x 0 ) : M ⊗ 2 N → { functions on X ( x 0 ) − 2 N } 2 ( X ) If E . v = 0, then F ( x 0 ) [ v ]: X ( x 0 ) → C is independent of x 0 , n thus defines a function F [ v ]: X 2 N → C . (PDE) If E . v = 0, then Z = F [ v ] satisfies (PDE). Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  43. The correspondence theorem (special case) ◮ X ( x 0 ) x 0 X ( x 0 ) 2 N = { ( x j ) 2 N � x 0 < x 1 < · · · < x 2 N } , � X 2 N = � j = 1 2 N κ ∈ ( 0 , 8 ) \ Q , q = e i π 4 /κ Theorem (K. & Peltola) F ( x 0 ) : M ⊗ 2 N → { functions on X ( x 0 ) − 2 N } 2 ( X ) If E . v = 0, then F ( x 0 ) [ v ]: X ( x 0 ) → C is independent of x 0 , n thus defines a function F [ v ]: X 2 N → C . (PDE) If E . v = 0, then Z = F [ v ] satisfies (PDE). (COV) If E . v = 0 and K . v = v , then Z = F [ v ] satisfies (COV). Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  44. The correspondence theorem (special case) ◮ X ( x 0 ) x 0 X ( x 0 ) 2 N = { ( x j ) 2 N � x 0 < x 1 < · · · < x 2 N } , � X 2 N = � j = 1 2 N κ ∈ ( 0 , 8 ) \ Q , q = e i π 4 /κ Theorem (K. & Peltola) F ( x 0 ) : M ⊗ 2 N → { functions on X ( x 0 ) − 2 N } 2 ( X ) If E . v = 0, then F ( x 0 ) [ v ]: X ( x 0 ) → C is independent of x 0 , n thus defines a function F [ v ]: X 2 N → C . (PDE) If E . v = 0, then Z = F [ v ] satisfies (PDE). (COV) If E . v = 0 and K . v = v , then Z = F [ v ] satisfies (COV). F ( x 0 ) [ v ] ( x j + 1 − x j ) − 2 h = F ( x 0 ) [ˆ (ASY) lim x j , x j + 1 → ξ π j ( v )] Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  45. The correspondence theorem (special case) ◮ M 2 ⊗ M 2 ∼ = M 1 ⊕ M 3 ◮ X ( x 0 ) x 0 X ( x 0 ) 2 N = { ( x j ) 2 N � x 0 < x 1 < · · · < x 2 N } , � X 2 N = � j = 1 2 N κ ∈ ( 0 , 8 ) \ Q , q = e i π 4 /κ Theorem (K. & Peltola) F ( x 0 ) : M ⊗ 2 N → { functions on X ( x 0 ) − 2 N } 2 ( X ) If E . v = 0, then F ( x 0 ) [ v ]: X ( x 0 ) → C is independent of x 0 , n thus defines a function F [ v ]: X 2 N → C . (PDE) If E . v = 0, then Z = F [ v ] satisfies (PDE). (COV) If E . v = 0 and K . v = v , then Z = F [ v ] satisfies (COV). F ( x 0 ) [ v ] ( x j + 1 − x j ) − 2 h = F ( x 0 ) [ˆ (ASY) lim x j , x j + 1 → ξ π j ( v )] Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  46. The correspondence theorem (special case) ◮ M 2 ⊗ M 2 ∼ = M 1 ⊕ M 3 , proj. to M 1 ∼ = C is ˆ π : M 2 ⊗ M 2 → C . ◮ X ( x 0 ) x 0 X ( x 0 ) 2 N = { ( x j ) 2 N � x 0 < x 1 < · · · < x 2 N } , � X 2 N = � j = 1 2 N κ ∈ ( 0 , 8 ) \ Q , q = e i π 4 /κ Theorem (K. & Peltola) F ( x 0 ) : M ⊗ 2 N → { functions on X ( x 0 ) − 2 N } 2 ( X ) If E . v = 0, then F ( x 0 ) [ v ]: X ( x 0 ) → C is independent of x 0 , n thus defines a function F [ v ]: X 2 N → C . (PDE) If E . v = 0, then Z = F [ v ] satisfies (PDE). (COV) If E . v = 0 and K . v = v , then Z = F [ v ] satisfies (COV). F ( x 0 ) [ v ] ( x j + 1 − x j ) − 2 h = F ( x 0 ) [ˆ (ASY) lim x j , x j + 1 → ξ π j ( v )] Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  47. The correspondence theorem (special case) ◮ M 2 ⊗ M 2 ∼ = M 1 ⊕ M 3 , proj. to M 1 ∼ = C is ˆ π : M 2 ⊗ M 2 → C . → M ⊗ 2 ( N − 1 ) π j : M ⊗ 2 N ◮ ˆ , projection ˆ π in factors j and j + 1 2 2 ◮ X ( x 0 ) x 0 X ( x 0 ) 2 N = { ( x j ) 2 N � x 0 < x 1 < · · · < x 2 N } , � X 2 N = � j = 1 2 N κ ∈ ( 0 , 8 ) \ Q , q = e i π 4 /κ Theorem (K. & Peltola) F ( x 0 ) : M ⊗ 2 N → { functions on X ( x 0 ) − 2 N } 2 ( X ) If E . v = 0, then F ( x 0 ) [ v ]: X ( x 0 ) → C is independent of x 0 , n thus defines a function F [ v ]: X 2 N → C . (PDE) If E . v = 0, then Z = F [ v ] satisfies (PDE). (COV) If E . v = 0 and K . v = v , then Z = F [ v ] satisfies (COV). F ( x 0 ) [ v ] ( x j + 1 − x j ) − 2 h = F ( x 0 ) [ˆ (ASY) lim x j , x j + 1 → ξ π j ( v )] Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  48. Translation of the multiple SLE problem ◮ M 2 ⊗ M 2 ∼ = M 1 ⊕ M 3 , proj. to M 1 ∼ = C is ˆ π : M 2 ⊗ M 2 → C . → M ⊗ 2 ( N − 1 ) π j : M ⊗ 2 N ◮ ˆ , projection ˆ π in factors j and j + 1 2 2 The translation: If ( v α ) α ∈ PPP N satisfies (SING) K . v α = v α , E . v α = 0, ( F . v α = 0 ) � v α/ { j , j + 1 } if { j , j + 1 } ∈ α (PROJ) ˆ π j ( v α ) = ∀ j if { j , j + 1 } / ∈ α 0 then the functions Z α = F [ v α ] satisfy (PDE), (COV), (ASY). Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  49. Translation of the multiple SLE problem ◮ M 2 ⊗ M 2 ∼ = M 1 ⊕ M 3 , proj. to M 1 ∼ = C is ˆ π : M 2 ⊗ M 2 → C . → M ⊗ 2 ( N − 1 ) π j : M ⊗ 2 N ◮ ˆ , projection ˆ π in factors j and j + 1 2 2 The translation: If ( v α ) α ∈ PPP N satisfies (SING) K . v α = v α , E . v α = 0, ( F . v α = 0 ) � v α/ { j , j + 1 } if { j , j + 1 } ∈ α (PROJ) ˆ π j ( v α ) = ∀ j if { j , j + 1 } / ∈ α 0 then the functions Z α = F [ v α ] satisfy (PDE), (COV), (ASY). Trivial subrepresentation: dim { v ∈ M ⊗ 2 N � (SING) } = C N = 1 � 2 N � � 2 N + 1 N Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  50. Translation of the multiple SLE problem ◮ M 2 ⊗ M 2 ∼ = M 1 ⊕ M 3 , proj. to M 1 ∼ = C is ˆ π : M 2 ⊗ M 2 → C . → M ⊗ 2 ( N − 1 ) π j : M ⊗ 2 N ◮ ˆ , projection ˆ π in factors j and j + 1 2 2 The translation: If ( v α ) α ∈ PPP N satisfies (SING) K . v α = v α , E . v α = 0, ( F . v α = 0 ) � v α/ { j , j + 1 } if { j , j + 1 } ∈ α (PROJ) ˆ π j ( v α ) = ∀ j if { j , j + 1 } / ∈ α 0 then the functions Z α = F [ v α ] satisfy (PDE), (COV), (ASY). Trivial subrepresentation: dim { v ∈ M ⊗ 2 N � (SING) } = C N = 1 � 2 N � � 2 N + 1 N Uniqueness of solutions: The only solution of the π j ( v ) = 0 ∀ j & (SING), is v = 0. homogeneous problem, ˆ Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  51. Explicit solution for the maximally nested case Rainbow configuration: ⋓ N = {{ 1 , 2 N } , { 2 , 2 N − 1 } , . . . , { N , N + 1 }} Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  52. Explicit solution for the maximally nested case Rainbow configuration: ⋓ N = {{ 1 , 2 N } , { 2 , 2 N − 1 } , . . . , { N , N + 1 }} Note : for rainbow configuration ⋓ N ∈ PPP N , (PROJ) becomes π N ( v ⋓ N ) = v ⋓ N − 1 and ˆ ˆ π j ( v ⋓ N ) = 0 for j � = N Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  53. Explicit solution for the maximally nested case Rainbow configuration: ⋓ N = {{ 1 , 2 N } , { 2 , 2 N − 1 } , . . . , { N , N + 1 }} Note : for rainbow configuration ⋓ N ∈ PPP N , (PROJ) becomes π N ( v ⋓ N ) = v ⋓ N − 1 and ˆ ˆ π j ( v ⋓ N ) = 0 for j � = N Explicit formula : The solution for rainbow configurations is N ( − 1 ) k q k ( N − k − 1 ) × ( F k . ( e ⊗ N � )) ⊗ ( F N − k . ( e ⊗ N v ⋓ N = const . × )) . 0 0 k = 0 Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  54. � � � � � � � � � � � � � � � � � � Recursive solution on the poset of configurations � � � Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  55. � � � � � � � � � � � � � � � � � � Recursive solution on the poset of configurations Tying operation ℘ j : PPP N → PPP N : - connect j and j + 1 - connect the points to which j and j + 1 were previously connected α l 2 l 1 j j + 1 ℘ j α ℘ j l 2 l 1 j j + 1 � � � Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  56. � � � � � � � � � � � � � � � � � � Recursive solution on the poset of configurations Tying operation ℘ j : PPP N → PPP N : - connect j and j + 1 - connect the points to which j and j + 1 were previously connected Recursion based on formula: if { j , j + 1 } ∈ ̺ ∈ PPP N , then ( id − π j ) ( v ̺ ) = − 1 � v β [ 2 ] β ∈ ℘ − 1 ( ̺ ) \{ ̺ } j � � � Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  57. Summary: solution of pure partition functions Theorem (K. & Peltola) Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  58. Summary: solution of pure partition functions Theorem (K. & Peltola) ◮ With v ∅ = 1, there is a unique collection ( v α ) α ∈ PPP solving the system (SING) & (PROJ). Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  59. Summary: solution of pure partition functions Theorem (K. & Peltola) ◮ With v ∅ = 1, there is a unique collection ( v α ) α ∈ PPP solving the system (SING) & (PROJ). ◮ The vectors ( v α ) α ∈ PPP N span the C N -dimensional trivial subrepresentation { v ∈ W ⊗ 2 N � (SING) } � 2 Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  60. Summary: solution of pure partition functions Theorem (K. & Peltola) ◮ With v ∅ = 1, there is a unique collection ( v α ) α ∈ PPP solving the system (SING) & (PROJ). ◮ The vectors ( v α ) α ∈ PPP N span the C N -dimensional trivial subrepresentation { v ∈ W ⊗ 2 N � (SING) } � 2 ◮ The functions Z α = F [ v α ] , span c N -dimensional solution spaces of the system � � ∂ 2 (PDE) D j Z α = 0, D j = κ 2 ∂ 2 h j + � ∂ x i − ∂ x 2 i � = j ( x i − x j ) 2 2 x i − x j j = 1 µ ′ ( x j ) h × Z = � 2 N � � � � (COV) Z x 1 , . . . µ ( x 1 ) , . . . and their asymptotic behavior as x j , x j + 1 → ξ is � Z α/ { j , j + 1 } if { j , j + 1 } ∈ α Z α (ASY) lim ( x j + 1 − x j ) − 2 h = . 0 if { j , j + 1 } / ∈ α Correlation functions with hidden quantum group 3. Quantum group solutions for multiple SLEs Kalle Kytölä — Florence, May 2015

  61. 4. G ENERAL QUANTUM GROUP METHOD AND SOME DETAILS Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  62. Overview of the quantum group method (again) Correspondence: vectors in an n -fold tensor product representation ← → functions of n variables of a quantum group highest weight vectors ← → solutions to partial of subrepresentations differential equations vectors in the ← → Möbius covariant trivial subrepresentation functions ← → prescribed projections prescribed asymptotic to subrepresentations behavior Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  63. Integral solutions to PDEs of CFTs Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  64. The correspondence theorem (general case) F ( x 0 ) d 1 ,..., d n : � n → { functions on X ( x 0 ) Theorem (K. & Peltola) j = 1 M d j − } n Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  65. The correspondence theorem (general case) ( v highest weight vector ⇔ E . v = 0) ( v in trivial subrepresentation ⇔ E . v = 0 and K . v = v ) F ( x 0 ) d 1 ,..., d n : � n → { functions on X ( x 0 ) Theorem (K. & Peltola) j = 1 M d j − } n Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  66. The correspondence theorem (general case) ( v highest weight vector ⇔ E . v = 0) ( v in trivial subrepresentation ⇔ E . v = 0 and K . v = v ) F ( x 0 ) d 1 ,..., d n : � n → { functions on X ( x 0 ) Theorem (K. & Peltola) j = 1 M d j − } n ( X n ) If v is a highest weight vector, then F ( x 0 ) [ v ]: X ( x 0 ) → C is n independent of x 0 , thus defines a function F [ v ]: X n → C . Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  67. The correspondence theorem (general case) ( v highest weight vector ⇔ E . v = 0) ( v in trivial subrepresentation ⇔ E . v = 0 and K . v = v ) F ( x 0 ) d 1 ,..., d n : � n → { functions on X ( x 0 ) Theorem (K. & Peltola) j = 1 M d j − } n ( X n ) If v is a highest weight vector, then F ( x 0 ) [ v ]: X ( x 0 ) → C is n independent of x 0 , thus defines a function F [ v ]: X n → C . (PDE) If v is a highest weight vector, then F [ v ]: X n → C satisfies n linear homogeneous PDEs of orders d 1 , . . . , d n . Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  68. The correspondence theorem (general case) ( v highest weight vector ⇔ E . v = 0) ( v in trivial subrepresentation ⇔ E . v = 0 and K . v = v ) F ( x 0 ) d 1 ,..., d n : � n → { functions on X ( x 0 ) Theorem (K. & Peltola) j = 1 M d j − } n ( X n ) If v is a highest weight vector, then F ( x 0 ) [ v ]: X ( x 0 ) → C is n independent of x 0 , thus defines a function F [ v ]: X n → C . (PDE) If v is a highest weight vector, then F [ v ]: X n → C satisfies n linear homogeneous PDEs of orders d 1 , . . . , d n . (COV) F ( x 0 ) [ v ]: X ( x 0 ) → C is n - translation invariant - homogeneous, if v is K -eigenvector - Möbius covariant, if v is in trivial subrepresentation Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  69. The correspondence theorem (general case) ( v highest weight vector ⇔ E . v = 0) ( v in trivial subrepresentation ⇔ E . v = 0 and K . v = v ) F ( x 0 ) d 1 ,..., d n : � n → { functions on X ( x 0 ) Theorem (K. & Peltola) j = 1 M d j − } n ( X n ) If v is a highest weight vector, then F ( x 0 ) [ v ]: X ( x 0 ) → C is n independent of x 0 , thus defines a function F [ v ]: X n → C . (PDE) If v is a highest weight vector, then F [ v ]: X n → C satisfies n linear homogeneous PDEs of orders d 1 , . . . , d n . (COV) F ( x 0 ) [ v ]: X ( x 0 ) → C is n - translation invariant - homogeneous, if v is K -eigenvector - Möbius covariant, if v is in trivial subrepresentation (ASY) M d j + 1 ⊗ M d j ∼ d M d induces a decomp. of � n = � j = 1 M d j . � � � � � � If v ∈ i > j + 1 M d i ⊗ M d ⊗ i < j M d i , then F ( x 0 ) ..., d j , d j + 1 ,... [ v ] ∼ ( x j + 1 − x j ) ∆ d × F ( x 0 ) ..., d ,... [ v ] . Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  70. Sketch: definition of the correspondence * anchor x 0 , chamber X ( x 0 ) = { x 0 < x 1 < x 2 < · · · < x n } ⊂ R n n Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  71. Sketch: definition of the correspondence * anchor x 0 , chamber X ( x 0 ) = { x 0 < x 1 < x 2 < · · · < x n } ⊂ R n n * parameters d 1 , d 2 , . . . , d n ∈ N Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  72. Sketch: definition of the correspondence * anchor x 0 , chamber X ( x 0 ) = { x 0 < x 1 < x 2 < · · · < x n } ⊂ R n n * parameters d 1 , d 2 , . . . , d n ∈ N n F ( x 0 ) : → { functions on X ( x 0 ) � M d j − } n j = 1 Informally, F ( x 0 ) [ v ]( x ) = “ � Γ[ v ] f ( x ; w ) d w ”, where the integration surface Γ[ v ] depends on v ∈ � n j = 1 M d j . Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  73. Sketch: definition of the correspondence * anchor x 0 , chamber X ( x 0 ) = { x 0 < x 1 < x 2 < · · · < x n } ⊂ R n n * parameters d 1 , d 2 , . . . , d n ∈ N n F ( x 0 ) : → { functions on X ( x 0 ) � M d j − } n j = 1 Informally, F ( x 0 ) [ v ]( x ) = “ � Γ[ v ] f ( x ; w ) d w ”, where the integration surface Γ[ v ] depends on v ∈ � n j = 1 M d j . F ( x 0 ) [ e l n ⊗ · · · ⊗ e l 1 ] = ϕ ( x 0 ) l 1 ,..., l n (below), extend linearly x 0 x 1 x 2 x n . . . l 1 l 2 l n ϕ ( x 0 ) l 1 ,..., l n ( x ) = Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  74. Sketch: definition of the correspondence * anchor x 0 , chamber X ( x 0 ) = { x 0 < x 1 < x 2 < · · · < x n } ⊂ R n n * parameters d 1 , d 2 , . . . , d n ∈ N n F ( x 0 ) : → { functions on X ( x 0 ) � M d j − } n j = 1 Informally, F ( x 0 ) [ v ]( x ) = “ � Γ[ v ] f ( x ; w ) d w ”, where the integration surface Γ[ v ] depends on v ∈ � n j = 1 M d j . F ( x 0 ) [ e l n ⊗ · · · ⊗ e l 1 ] = ϕ ( x 0 ) l 1 ,..., l n (below), extend linearly x 0 x 1 x 2 x n . . . l 1 l 2 l n ϕ ( x 0 ) l 1 ,..., l n ( x ) = κ ( d i − 1 )( d j − 1 ) × � ( w s − w r ) 2 κ × � ( w r − x i ) − 4 8 κ ( d i − 1 ) f ∝ � ( x j − x i ) Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  75. Sketch: asymptotics with subrepresentations M d ֒ → M d j + 1 ⊗ M d j d = d j + d j + 1 − 1 − 2 m Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  76. Sketch: asymptotics with subrepresentations ( d ; d j , d j + 1 ) M d ֒ → M d j + 1 ⊗ M d j , e 0 �→ τ , d = d j + d j + 1 − 1 − 2 m 0 Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  77. Sketch: asymptotics with subrepresentations ( d ; d j , d j + 1 ) M d ֒ → M d j + 1 ⊗ M d j , e 0 �→ τ , d = d j + d j + 1 − 1 − 2 m 0 k ( − 1 ) k [ d j − 1 − k ] ! [ d j + 1 − 1 − m + k ] ! ( d ; d j , d j + 1 ) q k ( d 1 − k ) τ ∝ � ( q − q − 1 ) m ( e k ⊗ e m − k ) 0 [ k ]! [ d j − 1 ] ![ m − k ]![ d 2 − 1 ]! Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  78. Sketch: asymptotics with subrepresentations ( d ; d j , d j + 1 ) M d ֒ → M d j + 1 ⊗ M d j , e 0 �→ τ , d = d j + d j + 1 − 1 − 2 m 0 k ( − 1 ) k [ d j − 1 − k ] ! [ d j + 1 − 1 − m + k ] ! ( d ; d j , d j + 1 ) q k ( d 1 − k ) τ ∝ � ( q − q − 1 ) m ( e k ⊗ e m − k ) 0 [ k ]! [ d j − 1 ] ![ m − k ]![ d 2 − 1 ]! Calculation for v = e l n ⊗ · · · ⊗ e l j + 2 ⊗ ( F l .τ 0 ) ⊗ e l j − 1 ⊗ · · · ⊗ e l 1 Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  79. Sketch: asymptotics with subrepresentations ( d ; d j , d j + 1 ) M d ֒ → M d j + 1 ⊗ M d j , e 0 �→ τ , d = d j + d j + 1 − 1 − 2 m 0 k ( − 1 ) k [ d j − 1 − k ] ! [ d j + 1 − 1 − m + k ] ! ( d ; d j , d j + 1 ) q k ( d 1 − k ) τ ∝ � ( q − q − 1 ) m ( e k ⊗ e m − k ) 0 [ k ]! [ d j − 1 ] ![ m − k ]![ d 2 − 1 ]! Calculation for v = e l n ⊗ · · · ⊗ e l j + 2 ⊗ ( F l .τ 0 ) ⊗ e l j − 1 ⊗ · · · ⊗ e l 1 x j x j +1 x 0 x 1 x n . . . . . . l l 1 l n m F ( x 0 ) [ v ]( x ) = Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  80. Sketch: asymptotics with subrepresentations ( d ; d j , d j + 1 ) M d ֒ → M d j + 1 ⊗ M d j , e 0 �→ τ , d = d j + d j + 1 − 1 − 2 m 0 k ( − 1 ) k [ d j − 1 − k ] ! [ d j + 1 − 1 − m + k ] ! ( d ; d j , d j + 1 ) q k ( d 1 − k ) τ ∝ � ( q − q − 1 ) m ( e k ⊗ e m − k ) 0 [ k ]! [ d j − 1 ] ![ m − k ]![ d 2 − 1 ]! Calculation for v = e l n ⊗ · · · ⊗ e l j + 2 ⊗ ( F l .τ 0 ) ⊗ e l j − 1 ⊗ · · · ⊗ e l 1 x j x j +1 x 0 x 1 x n . . . . . . l l 1 l n m F ( x 0 ) [ v ]( x ) = dominated convergence: ( x 0 ) F ..., dj , dj + 1 ,... [ v ]( ... ) x j , x j + 1 → ξ F ( x 0 ) − → ..., d ,... [ v ]( . . . , ξ, . . . ) dj , dj + 1 ( x j + 1 − x j ) ∆ d 2 ( 1 + d 2 − d 2 j − d 2 j + 1 )+ κ ( d j + d j + 1 − d − 1 ) d j , d j + 1 where ∆ = d 2 κ Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  81. Sketch: anchor point independence Write ϕ ( x 0 ) l 1 ,..., l n ( x ) in terms of α ( x 0 ) m 1 ,..., m n ( x ) x 0 x 1 x 2 x n . . . l 1 l 2 l n ϕ ( x 0 ) l 1 ,..., l n ( x ) = x n − 1 x 0 x 1 x 2 x n . . . α ( x 0 ) m 1 ,..., m n ( x ) = m 1 m 2 m n Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

  82. Sketch: anchor point independence Write ϕ ( x 0 ) l 1 ,..., l n ( x ) in terms of α ( x 0 ) m 1 ,..., m n ( x ) x 0 x 1 x 2 x n . . . l 1 l 2 l n ϕ ( x 0 ) l 1 ,..., l n ( x ) = x n − 1 x 0 x 1 x 2 x n . . . α ( x 0 ) m 1 ,..., m n ( x ) = m 1 m 2 m n Highest weight vectors: If E . v = 0, then in F ( x 0 ) [ v ]( x ) , the coefficient of α ( x 0 ) m 1 ,..., m n ( x ) vanishes whenever m 1 � = 0. Correlation functions with hidden quantum group 4. Details about the quantum group method Kalle Kytölä — Florence, May 2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend