boundary approximations for semi lagrangian schemes
play

Boundary Approximations for Semi-Lagrangian Schemes Applied to - PowerPoint PPT Presentation

Overview Boundary treatment Analysis Linear solvers Conclusions Boundary Approximations for Semi-Lagrangian Schemes Applied to Hamilton-Jacobi-Bellman Equations Christoph Reisinger Joint work with Julen Rotaetxe Arto Mathematical


  1. Overview Boundary treatment Analysis Linear solvers Conclusions Boundary Approximations for Semi-Lagrangian Schemes Applied to Hamilton-Jacobi-Bellman Equations Christoph Reisinger ⋆ Joint work with Julen Rotaetxe Arto ⋆ ⋆ Mathematical Institute University of Oxford Linz, 23 November 2016

  2. Overview Boundary treatment Analysis Linear solvers Conclusions M OTIVATION Background: ◮ Monotone schemes have “wide stencils” (Motzkin and Wasow, 1952). ◮ They “overstep” domain boundaries. ◮ Standard iterative (multilevel) schemes perform poorly. We propose a(n) ◮ boundary treatment with same local accuracy as in interior; ◮ unconditionally stable and monotone implicit scheme; ◮ analysis of a convergent aggregation-based multigrid scheme.

  3. Overview Boundary treatment Analysis Linear solvers Conclusions HJB EQUATIONS Consider α ∈A { L α [ u ]( t , x ) + f α ( t , x ) } = 0 , u t − inf ( t , x ) ∈ ( 0 , T ] × Ω , x ∈ ¯ u ( 0 , x ) = g ( x ) , Ω , u ( t , x ) = ψ ( x ) , ( t , x ) ∈ ( 0 , T ] × ∂ Ω , where Ω is a bounded domain, ¯ Ω := Ω ∪ ∂ Ω ⊆ R d , A is a compact set, and L α [ u ]( t , x ) = tr [ a α ( t , x ) D 2 u ( t , x )] + b α ( t , x ) Du ( t , x ) , a α = 1 2 σ α σ α, T with σ α ∈ R d × P , b α , f α , g and ψ take values in R d , R , R , and R .

  4. Overview Boundary treatment Analysis Linear solvers Conclusions S EMI -L AGRANGIAN SCHEMES Define the L inear I nterpolation S emi- L agrangian ( LISL ) scheme by ( I ∆ x φ )( t , x + y α, + ( t , x )) − 2 ( I ∆ x φ )( t , x )+( I ∆ x φ )( t , x + y α, − ( t , x )) ∆ x [ I ∆ x φ ]( t , x ) := � M L α p p , p = 1 2 ∆ x as in Debrabant and Jakobsen (2013), where I is bilinear interpolation and √ y α, ± y α, ± ∆ x σ α P + 1 = ∆ xb α , = ± p for p ≤ P , and M = P + 1. p We consider ◮ an explicit Euler scheme: V n + 1 − V n α ∈A L α ∆ x [ I ∆ x V n ] = 0 ; − inf ∆ t ◮ an implicit Euler scheme: V n + 1 − V n α ∈A L α ∆ x [ I ∆ x V n + 1 ] = 0 . − inf ∆ t In practice, we replace A by A with |A| = N α .

  5. Overview Boundary treatment Analysis Linear solvers Conclusions W IDE STENCILS AND BOUNDARIES √ The stencil “oversteps” in a layer of width k = ∆ x around the boundary. Figure: Truncation and extrapolation of the stencil for an elliptical domain and a mesh made of square cells. ∂ Ω Ω There are two situations where interpolation at x + y α, ± ( t , x ) is not possible: p A. x + y α, ± ∈ ¯ ( t , x ) / Ω (bottom left in Fig.); p B. x + y α, ± ( t , x ) ∈ ¯ Ω , but “its” element has vertices outside ¯ Ω (top right). p

  6. Overview Boundary treatment Analysis Linear solvers Conclusions D IFFERENT TREATMENTS ∂ Ω Ω ◮ Constant extrapolation in stencil direction. ◮ Linear extrapolation in stencil direction. ◮ Stencil truncation: Consider instead ˆ L α ∆ x [ I ∆ x φ ]( t , x ) := M A α y α, + ( t , x )) − ( A α p + B α p ) φ ( t , x ) + B α y α, − p ( I ∆ x φ )( t , x + ˆ p ( I ∆ x φ )( t , x + ˆ ( t , x )) p p � , 2 ∆ x p = 1 where y α, ± = µ α, ± y α, ± where µ α, ± µ ≥ 0 : x + µ y α, ± ˆ , ( t , x ) = min � ( t , x ) ∈ ∂ Ω � . p p p p p and A α p ≡ A α p ( t , x ) and B α p ≡ B α p ( t , x ) , such that ˆ L α ∆ x a consistent approximation as ∆ x → 0.

  7. Overview Boundary treatment Analysis Linear solvers Conclusions T HE TEST PROBLEM Problem A (see Section 9.3 from Debrabant and Jacobsen (2013)). It has exact solution � 3 � u ( t , x 1 , x 2 ) = 2 − t sin x 1 sin x 2 , and coefficients and control set are given by � 1 � � 3 � �� f α = cos 2 x 1 sin 2 x 2 + sin 2 x 1 cos 2 x 2 + 2 − t sin x 1 sin x 2 + 2 − t � − 2 sin ( x 1 + x 2 ) cos ( x 1 + x 2 ) cos x 1 cos x 2 , √ � sin ( x 1 + x 2 ) � b α = α, σ α = A = { α ∈ R 2 : α 2 1 + α 2 2 , 2 = 1 } . cos ( x 1 + x 2 ) ◮ The solution is periodic, and D. & J. (2013) use periodic boundary conditions in space for ( t , x 1 , x 2 ) ∈ [ 0 , T ] × [ − π, π ] 2 with T = 1 2 . ◮ Here, we use Dirichlet conditions .

  8. Overview Boundary treatment Analysis Linear solvers Conclusions T RUNCATED STENCILS Figure: Problem A: Left the stencil over a 11 × 11 grid and N α = 10 equally spaced points in A . Right the histograms of the displacement from the central node for 641 × 641 grid. Stencil 4 B = 1.71 3 A = 1.26 C = 1.00 C = 1.00 B = 2.14 2 A = 1.18 A = 1.00 1 B = 1.00 x2 0 C = 1.00 C = 1.00 A = 2.14 -1 B = 1.00 C = 1.00 B = 1.28 B = 1.26 A = 1.00 -2 C = 1.00 -3 A = 2.29 -4 -4 -3 -2 -1 0 1 2 3 4 x1 (b) The radius of the stencil in σ α is 14.27 (a) The finite difference weights are A ≡ A α 2 , 1 ( x ) , B ≡ B α 2 , 1 ( x ) and for this grid, given by � σ α � 2 � √ ∆ x = 640 /π . C ≡ ( µ α 2 , 2 ( x )) − 1 , N α = 10.

  9. Overview Boundary treatment Analysis Linear solvers Conclusions C ONSTANT AND LINEAR EXTRAPOLATION Table: Explicit Euler LISL method with N α = 40 for Problem A. (a) Constant extrapolation: L ∞ error over [ − π, π ) 2 3 ∆ t = ∆ x ∆ t = ∆ x 2 ∆ t = T ∆ t = ∆ x 2 N x 4 error rate error rate error rate error rate 41 1.36e+00 - 3.68e-01 - 3.72e-01 - 3.65e-01 - 81 1.89e+00 -0.48 2.61e-01 0.49 2.62e-01 0.51 2.60e-01 0.49 161 2.67e+00 -0.49 1.80e-01 0.54 1.80e-01 0.54 1.80e-01 0.53 321 3.77e+00 -0.50 1.27e-01 0.51 1.27e-01 0.51 1.27e-01 0.51 641 5.34e+00 -0.50 9.18e-02 0.47 9.18e-02 0.47 9.18e-02 0.46 (b) Linear extrapolation: L ∞ error over [ − π, π ) 2 3 ∆ t = ∆ x ∆ t = ∆ x 2 ∆ t = T ∆ t = ∆ x 2 4 N x error rate error rate error rate error rate 41 1.59e-01 - 1.04e-01 - 1.05e-01 - 1.03e-01 - 81 8.15e-02 0.96 5.25e-02 0.99 5.26e-02 1.00 5.22e-02 0.98 161 4.28e-02 0.93 5.62e-01 -3.42 5.63e-01 -3.42 5.58e-01 -3.42 321 2.75e-02 0.64 4.41e+03 -12.94 6.00e+03 -13.38 8.00e+03 -13.81 641 1.85e-02 0.57 2.77e+20 -55.80 2.70e+20 -55.32 1.37e+21 -57.25

  10. Overview Boundary treatment Analysis Linear solvers Conclusions S TENCIL TRUNCATION ON TWO DOMAINS Table: Explicit Euler LISL method for Problem A. (a) L ∞ error over [ − π, π ) 2 3 ∆ t = ∆ x ∆ t = ∆ x 2 ∆ t = T ∆ t = ∆ x 2 N x 4 error rate error rate error rate error rate 41 1.42e-01 - 4.39e-02 - 4.39e-02 - 4.36e-02 - 81 1.04e-01 0.45 2.12e-02 1.05 2.11e-02 1.06 2.11e-02 1.05 161 7.36e-02 0.50 1.10e-02 0.94 1.10e-02 0.94 1.10e-02 0.94 321 5.28e-02 0.48 1.34e+23 -83.33 5.77e-03 0.93 5.76e-03 0.93 641 3.77e-02 0.48 5.07e+89 -221.17 3.10e-03 0.90 3.10e-03 0.89 (b) L ∞ error over [ − π 8 , 15 π 8 ) 2 3 ∆ t = ∆ x ∆ t = ∆ x 2 ∆ t = T ∆ t = ∆ x 2 4 N x error rate error rate error rate error rate 41 1.55e-01 - 4.71e-02 - 4.76e-02 - 4.67e-02 - 81 1.12e-01 0.47 1.57e+05 -21.67 7.90e+05 -23.98 2.11e-02 1.15 161 8.04e-02 0.47 1.02e+33 -92.39 1.30e+35 -97.06 1.10e-02 0.94 321 5.80e-02 0.47 6.73e+103 -235.26 5.96e+138 -344.35 5.76e-03 0.93 641 4.22e-02 0.46 8.17e+276 -574.97 NaN NaN 3.10e-03 0.89

  11. Overview Boundary treatment Analysis Linear solvers Conclusions E MPIRICAL FINDINGS AND CONSISTENCY ◮ Constant extrapolation loses accuracy near boundary. ◮ Linear extrapolation is unstable. ◮ Stencil truncation has stricter CFL condition than in interior. ◮ CFL condition depends on boundary. The local LISL truncation error is y α, + y α, − O (∆ x ) if neither ˆ nor ˆ overstep; ◮ p p O (∆ x 1 / 2 ) y α, + y α, − if either ˆ or ˆ overstep; ◮ p p y α, + y α, − O ( 1 ) if both ˆ and ˆ overstep (cf. Max Jensen’s talk). ◮ p p (NB: The error is actually O (∆ x ) in the last case if the exact Dirichlet data are used.)

  12. Overview Boundary treatment Analysis Linear solvers Conclusions L OCAL BOUNDARY REFINEMENT Define (with N ( x ) the corners of the element x is in) √ Ω ( 1 ) := { x ∈ Ω ∆ x : N ( x ± σ ∆ x ) �⊂ Ω ∆ x } , ∆ x √ � � Ω ( 2 ) � Ω ∆ x \ Ω ( 1 ) := N ( x ± σ ∆ x ) ∩ , ∆ x ∆ x x ∈ Ω ( 1 ) ∆ x Ω ( 3 ) Ω ∆ x \ (Ω ( 1 ) ∆ x ∪ Ω ( 2 ) := ∆ x ) . ∆ x ∆ x with mesh size ∆ x ( i ) and step k ( i ) , Now refine Ω ( i ) ∆ x ( 1 ) = O (∆ x 3 / 2 ) , k ( 1 ) = O (∆ x ) , √ ∆ x ( 2 ) = O (∆ x 3 / 2 ) , k ( 2 ) = ∆ x , √ ∆ x ( 3 ) = ∆ x , k ( 3 ) = ∆ x . Then the local error is O (∆ x ) everywhere, and the total # of points O ( | Ω ∆ x | ) . Practically not necessary so not done in the following computations.

  13. Overview Boundary treatment Analysis Linear solvers Conclusions S TABILITY Recall ˆ L α ∆ x [ I ∆ x φ ]( t , x ) := M y α, + y α, − A α ( t , x )) − ( A α p + B α p ) φ ( t , x ) + B α p ( I ∆ x φ )( t , x + ˆ p ( I ∆ x φ )( t , x + ˆ ( t , x )) p p � . 2 ∆ x p = 1 The θ -scheme ( θ = 0 explicit, θ = 1 implicit) is monotone if   M A α p + B α p �  ≤ 1 . ( 1 − θ )∆ t n  2 ∆ x p = 1 This implies that for 0 ≤ θ < 1 the scheme is monotone ( − → ℓ ∞ − stable) if y α, + y α, − ∆ t ≤ C ∆ x and neither ˆ nor ˆ overstep; ◮ p p ∆ t ≤ C ∆ x 3 / 2 y α, + y α, − and either ˆ or ˆ overstep; ◮ p p y α, + y α, − ∆ t ≤ C ∆ x 2 and both ˆ and ˆ overstep. ◮ p p

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend