semi lagrangian schemes for linear and fully non linear
play

Semi-Lagrangian schemes for linear and fully non-linear - PowerPoint PPT Presentation

Introduction SL schemes for HJB Conclusion Semi-Lagrangian schemes for linear and fully non-linear Hamilton-Jacobi-Bellman equations Kristian Debrabant 1 ,Espen R. Jakobsen 2 1 Department of Mathematics and Computer Science, University of


  1. Introduction SL schemes for HJB Conclusion Semi-Lagrangian schemes for linear and fully non-linear Hamilton-Jacobi-Bellman equations Kristian Debrabant 1 ,Espen R. Jakobsen 2 1 Department of Mathematics and Computer Science, University of Southern Denmark 2 Department of Mathematical Sciences, Norwegian University of Science And Technology, Trondheim, Norway Padova, June 28, 2012 1

  2. Introduction SL schemes for HJB Conclusion Outline Introduction 1 Semi-Lagrangian schemes for Hamilton-Jacobi-Bellman 2 equations Conclusion 3 2

  3. Introduction SL schemes for HJB Conclusion Outline Introduction 1 Semi-Lagrangian schemes for Hamilton-Jacobi-Bellman 2 equations Conclusion 3 3

  4. Introduction SL schemes for HJB Conclusion Stochastic control problem = ⇒ HJB equation M � � � � � dX ( t ) = b t , X ( t ) , α ( t ) dt + t , X ( t ) , α ( t ) dW i ( t ) , t 0 ≤ t ≤ T , σ i i = 1 R N . X ( t 0 ) = X 0 ∈ I � � T �� � � � u ( t 0 , X 0 ) = inf α ∈ A E β ( t 0 , t ) f t , X ( t ) , α ( t ) dt + β ( t 0 , T ) g X ( T ) t 0 where � t � � t 0 c s , X ( s ) ,α ( s ) ds . β ( t 0 , t ) = e Under appropriate assumptions: u solves HJB equation � � − u t ( t , x ) − inf L [ u ]( t , x , α ) + c ( t , x , α ) u ( t , x ) + f ( t , x , α ) = 0 α ∈A R N , R N , in [ 0 , T ) × I u ( T , x ) = g ( x ) in I L [ u ]( t , x , α ) = 1 2 Tr [ σ ( t , x , α ) σ ⊤ ( t , x , α ) D 2 u ( t , x )] + b ( t , x , α ) Du ( t , x ) 4

  5. Introduction SL schemes for HJB Conclusion Stochastic control problem = ⇒ HJB equation M � � � � � dX ( t ) = b t , X ( t ) , α ( t ) dt + t , X ( t ) , α ( t ) dW i ( t ) , t 0 ≤ t ≤ T , σ i i = 1 R N . X ( t 0 ) = X 0 ∈ I � � T �� � � � u ( t 0 , X 0 ) = inf α ∈ A E β ( t 0 , t ) f t , X ( t ) , α ( t ) dt + β ( t 0 , T ) g X ( T ) t 0 where � t � � t 0 c s , X ( s ) ,α ( s ) ds . β ( t 0 , t ) = e Under appropriate assumptions: u solves HJB equation � � − u t ( t , x ) − inf L [ u ]( t , x , α ) + c ( t , x , α ) u ( t , x ) + f ( t , x , α ) = 0 α ∈A R N , R N , in [ 0 , T ) × I u ( T , x ) = g ( x ) in I L [ u ]( t , x , α ) = 1 2 Tr [ σ ( t , x , α ) σ ⊤ ( t , x , α ) D 2 u ( t , x )] + b ( t , x , α ) Du ( t , x ) 4

  6. Introduction SL schemes for HJB Conclusion Stochastic control problem = ⇒ HJB equation M � � � � � dX ( t ) = b t , X ( t ) , α ( t ) dt + t , X ( t ) , α ( t ) dW i ( t ) , t 0 ≤ t ≤ T , σ i i = 1 R N . X ( t 0 ) = X 0 ∈ I � � T �� � � � u ( t 0 , X 0 ) = inf α ∈ A E β ( t 0 , t ) f t , X ( t ) , α ( t ) dt + β ( t 0 , T ) g X ( T ) t 0 where � t � � t 0 c s , X ( s ) ,α ( s ) ds . β ( t 0 , t ) = e Under appropriate assumptions: u solves in the viscosity sense � � − u t ( t , x ) − inf L [ u ]( t , x , α ) + c ( t , x , α ) u ( t , x ) + f ( t , x , α ) = 0 α ∈A R N , R N , in [ 0 , T ) × I u ( T , x ) = g ( x ) in I L [ u ]( t , x , α ) = 1 2 Tr [ σ ( t , x , α ) σ ⊤ ( t , x , α ) D 2 u ( t , x )] + b ( t , x , α ) Du ( t , x ) 4

  7. Introduction SL schemes for HJB Conclusion Convergence to viscosity solution via Lax type result Barles & Souganidis 1991: The numerical approximation U obtained by the scheme S (∆ t , ∆ x , n , j , u n j , u ) = 0 converges uniformly to the viscosity solution if at least for some sequence (∆ t , ∆ x ) converging to zero it is stable: For all (∆ t , ∆ x ) there exists a solution U with a bound independent of (∆ t , ∆ x ) . consistent: S (∆ t , ∆ x , n , j , Φ n j + ξ, Φ + ξ ) t , x , Φ( t , x ) , Φ t ( t , x ) , D Φ( t , x ) , D 2 Φ( t , x ) � � lim → F ρ (∆ t , ∆ x ) ξ → 0 ∆ t , ∆ x → 0 ( n ∆ t , j ∆ x ) → ( t , x ) for some positive function ρ , any smooth function Φ and any ( x , t ) monotone: S (∆ t , ∆ x , n , j , u n j , u ) ≤ S (∆ t , ∆ x , n , j , v n j , v ) if u ≥ v , u n j = v n j , for any ∆ t , ∆ x , n , j , u and v Oberman (2006), Pooley, Forsyth, Vetzal (2003): Nonmonotone methods need not converge or even converge to a wrong function 5

  8. Introduction SL schemes for HJB Conclusion Outline Introduction 1 Semi-Lagrangian schemes for Hamilton-Jacobi-Bellman 2 equations Conclusion 3 6

  9. Introduction SL schemes for HJB Conclusion Proposed family of SL schemes � � PDE: u t ( t , x ) − inf L [ u ]( t , x , α ) + c ( t , x , α ) u ( t , x ) + f ( t , x , α ) = 0 α ∈A R N , R N , in ( 0 , T ] × I u ( 0 , x ) = g ( x ) in I L [ u ]( t , x , α ) = 1 2 Tr [ σ ( t , x , α ) σ ⊤ ( t , x , α ) D 2 u ( t , x )] + b ( t , x , α ) Du ( t , x ) Semi-discretization in ( 0 , T ) × X ∆ x : � � U t ( t , x ) − inf L k [ I U ]( t , x , α ) + c ( t , x , α ) U ( t , x ) + f ( t , x , α ) = 0 , α ∈A t , x + y − P � t , x + y + � � � k , i ( t , x , α ) − 2 ϕ ( t , x ) + ϕ k , i ( t , x , α ) ϕ � L k [ ϕ ]( t , x , α ) := 2 k 2 i = 1 P � [ y + k , i + y − k , i ] = 2 k 2 b + O ( k 4 ) , such that i = 1 P k , i ] = 2 k 2 σσ ⊤ + O ( k 4 ) = � [ y + k , i y + ⊤ + y − k , i y − ⊤ ⇒ k | σ | ∼ stencil length k , i i = 1 P P � [ ⊗ 3 j = 1 y + k , i + ⊗ 3 j = 1 y − k , i ] = O ( k 4 ) , � [ ⊗ 3 j = 1 y + k , i + ⊗ 3 j = 1 y − k , i ] = O ( k 4 ) i = 1 i = 1 7

  10. Introduction SL schemes for HJB Conclusion Proposed family of SL schemes � � PDE: u t ( t , x ) − inf L [ u ]( t , x , α ) + c ( t , x , α ) u ( t , x ) + f ( t , x , α ) = 0 α ∈A R N , R N , in ( 0 , T ] × I u ( 0 , x ) = g ( x ) in I L [ u ]( t , x , α ) = 1 2 Tr [ σ ( t , x , α ) σ ⊤ ( t , x , α ) D 2 u ( t , x )] + b ( t , x , α ) Du ( t , x ) Semi-discretization in ( 0 , T ) × X ∆ x : � � U t ( t , x ) − inf L k [ I U ]( t , x , α ) + c ( t , x , α ) U ( t , x ) + f ( t , x , α ) = 0 , α ∈A t , x + y − P � t , x + y + � � � k , i ( t , x , α ) − 2 ϕ ( t , x ) + ϕ k , i ( t , x , α ) ϕ � L k [ ϕ ]( t , x , α ) := 2 k 2 i = 1 � D ϕ � ∞ + � D 2 ϕ � ∞ + � D 3 ϕ � ∞ + � D 4 ϕ � ∞ k 2 � � = ⇒ | L k [ ϕ ] − L [ ϕ ] | ≤ C Important for monotonicity: I monotone, i. e. � ( I ϕ )( x ) = ϕ ( x j ) w j ( x ) , w i ( x j ) = δ ij , and w j ( x ) ≥ 0 for all i , j ∈ N j In general: Not more than second order accurate interpolation ( I linear) 7

  11. Introduction SL schemes for HJB Conclusion Proposed family of SL schemes � � PDE: u t ( t , x ) − inf L [ u ]( t , x , α ) + c ( t , x , α ) u ( t , x ) + f ( t , x , α ) = 0 α ∈A R N , R N , in ( 0 , T ] × I u ( 0 , x ) = g ( x ) in I L [ u ]( t , x , α ) = 1 2 Tr [ σ ( t , x , α ) σ ⊤ ( t , x , α ) D 2 u ( t , x )] + b ( t , x , α ) Du ( t , x ) Semi-discretization in ( 0 , T ) × X ∆ x : � � U t ( t , x ) − inf L k [ I U ]( t , x , α ) + c ( t , x , α ) U ( t , x ) + f ( t , x , α ) = 0 , α ∈A t , x + y − P � t , x + y + � � � k , i ( t , x , α ) − 2 ϕ ( t , x ) + ϕ k , i ( t , x , α ) ϕ � L k [ ϕ ]( t , x , α ) := 2 k 2 i = 1 � D ϕ � ∞ + � D 2 ϕ � ∞ + � D 3 ϕ � ∞ + � D 4 ϕ � ∞ k 2 � � = ⇒ | L k [ ϕ ] − L [ ϕ ] | ≤ C Important for monotonicity: I monotone, i. e. � � ( I ϕ )( x ) = ϕ ( x j ) w ϕ, j ( x ) , w ϕ, i ( x j ) = δ ij , w ϕ, j ( x ) ≥ 0 , w ϕ, j ( x ) ≡ 1 j j In general: Not more than second order accurate interpolation ( I linear) But: Higher order monotonicity preserving interpolation is possible if ϕ is known to be monotone → nonlinear in ϕ 7

  12. Introduction SL schemes for HJB Conclusion A unifying framework - examples √ ∆ x , y ± k = k 2 b The approximation of Falcone (1987): k = 1 bD ϕ ≈ I ϕ ( x + ∆ xb ) − I ϕ ( x ) ∆ x √ k , j = ± k σ j + k 2 ∆ x , y ± Camilli-Falcone (1995): k = M b 2 1 2 Tr [ σσ ⊤ D 2 ϕ ] + bD ϕ √ √ M ∆ x σ j + ∆ x ∆ x σ j + ∆ x I ϕ ( x + M b ) − 2 I ϕ ( x ) + I ϕ ( x − M b ) � ≈ 2 ∆ x j = 1 New version (efficient for σ independent of α ): 3 1 2 Tr [ σσ ⊤ D 2 ϕ ] + bD ϕ M ≈ I ϕ ( x + k 2 b ) − I ϕ ( x ) I ϕ ( x + k σ j ) − 2 I ϕ ( x ) + I ϕ ( x − k σ j ) � + k 2 2 k 2 j = 1 8

  13. Introduction SL schemes for HJB Conclusion Monotonicity preserving cubic Hermite interpolation (Fritsch & Carlson 1980, Eisenstat, Jackson & Lewis 1985) On [ x i , x i + 1 ] : ( I ϕ )( x ) = c 0 + c 1 ( x − x i ) + c 2 ( x − x i ) 2 + c 3 ( x − x i ) 3 with ( I ϕ )( x i ) = ϕ i , ( I ϕ )( x i + 1 ) = ϕ i + 1 , ( I ϕ ) ′ ( x i ) ≈ ϕ ′ i , ( I ϕ ) ′ ( x i + 1 ) ≈ ϕ ′ i + 1 ϕ i − 2 − 8 ϕ i − 1 + 8 ϕ i + 1 − ϕ i + 2 ϕ i + 1 − ϕ i d i + 1 β i = d i d i = , ∆ i = , ∆ i , γ i = ∆ i . 12 ∆ x ∆ x Use ( I ϕ ) ′ ( x i ) = β i ∆ i , ( I ϕ ) ′ ( x i + 1 ) = γ i ∆ i = ⇒ ( I ϕ )( x ) = ϕ i + ( ϕ i + 1 − ϕ i ) P i ( x ) where � 2 � 3 P i ( x ) = β i x − x i � x − x i � x − x i + ( 3 − γ i − 2 β i ) − ( 2 − β i − γ i ) . ∆ x ∆ x ∆ x = ⇒ w ϕ, i ( x ) = ( 1 − P i ( x )) 1 [ x i , x i + 1 ) ( x ) + P i − 1 ( x ) 1 [ x i − 1 , x i ) ( x ) γ i 4 3 Modify β i and γ i such that ( β i , γ i ) ∈ M : 2 M 1 ⇒ fourth order accurate monotonicity preserving C 0 = β i 1 2 3 4 interpolant = ⇒ New second order compact stencil schemes 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend