bob pond
play

Bob Pond Acknowledge: John Hirth Classical Model (CM) Geometrical - PowerPoint PPT Presentation

Mechanistic Models of Deformation Twinning and Martensitic Transformations Bob Pond Acknowledge: John Hirth Classical Model (CM) Geometrical invariant plane Topological Model (TM) Mechanistic coherent interfaces, interfacial


  1. Mechanistic Models of Deformation Twinning and Martensitic Transformations Bob Pond Acknowledge: John Hirth

  2. Classical Model (CM) Geometrical – invariant plane Topological Model (TM) Mechanistic – coherent interfaces, interfacial line-defects

  3. CM TM 𝒄 Ʇ β„Ž Ξ³ = 𝑐/β„Ž 𝑑 Twinning dislocation: e.g. F.C. Frank, 1949 (disconnection) Bilby & Crocker, 1965 Twinning : e.g. G. Friedel, 1926 Martensitic Transformations PTMC : WLR and BM, 1953 Pond and Hirth, 2003

  4. Interfacial defect character and kinetics

  5. Admissible interfacial defects Operation characterising defect (𝑿 𝝁 , 𝒙 𝝁 )(𝑿 𝝂 , 𝒙 𝝂 ) βˆ’1 Interfacial dislocations white crystal 𝑱, 𝒄 𝝁 𝒐 Twinning disconnections (𝑿 𝝁 , 𝒙 𝝁 ) β„Ž 𝒄 = 𝒖 𝝁 βˆ’ 𝑸𝒖 𝝂 β„Ž = 𝒐 β‹… 𝒖 𝝁 (𝑿 𝝂 , 𝒙 𝝂 ) Ξ³ = 𝑐/β„Ž black crystal 𝒄 ΞΌ βˆ’π’– 𝝂 𝒖 𝝁 Pond, 1989 bicrystal

  6. Thermally activated disconnections β€’ activation energy at fixed stress ~ 𝑐 2 loop nucleation rate, ሢ 𝑂 , reasonable for small 𝑐 οƒ˜ β€’ defect mobility, ሢ 𝐻 οƒ˜ enhanced by larger core width, π‘₯ , w hich is promoted by small β„Ž οƒ˜ simple shuffles

  7. Motion of a twinning disconnection in a twin 𝒖 𝝁 [10 ΰ΄€ 10] b 𝐹 𝑗 = 0.26 𝐾𝑛 βˆ’2 h 𝒖 𝝂 [0001] 𝒄 = 0.062 π‘œπ‘› β„Ž = 2𝑒 (10ΰ΄₯ 12) = 0.376 π‘œπ‘› Ξ³ = 𝑐/β„Ž 𝛽 βˆ’ π‘ˆπ‘— π‘₯~6𝑏 𝐢𝑠𝑏𝑗𝑑𝑏𝑨 𝑓𝑒 π‘π‘š. 1966 𝑒 = 1 𝑁𝑄𝑏 𝜏 𝑄

  8. Atom Tracking: Shear and Shuffle Displacements in Twin (10ΰ΄€ 12) z 4 distinct atoms y β€œswapping” β€œrocking” Pond et al., 2013

  9. Deformation twins in Ni 2 MnGa inter-variant boundary Disconnection 𝒄 = 1 12 10 ΰ΄€ 1 = 0.072 π‘œπ‘› 𝒉 = πŸπŸπŸπŸ‘ β„Ž = 𝑒 (202) = 0.211 π‘œπ‘› 𝛿 = 𝑐 β„Ž = 0.34 Pond et al. 2012 𝒉 β‹… 𝒄 = 𝟐 Zarubova et al. 2012

  10. Twin tip in Ni 2 MnGa 𝐹 𝑗 = 0.01 𝐾𝑛 βˆ’2 4 distinct atoms no shuffling h β„Ž 𝒉 = πŸ‘πŸΰ΄₯ πŸ‘ Muntifering et al. 2014 SF HAADF STEM (Titan PNNL)

  11. Topological model for type II twinning

  12. Classical Model: irrational plane of shear 1 2 𝛽 𝛽 1 Type I Type II 1 rational 2 irrational 2 Ο† 2 1 i rrational 2 rational 1 = 2 1 = 1 1 2 Ο† 2 βˆ’π›½ 2 s 2 1 1 s 2 1 + 𝛽 𝑑 = 2π‘’π‘π‘œπ›½ 2 1 1 = 1 1 = 2

  13. TiNi ΞΌ 1ΰ΄€ 10 𝜈 000 101 πœ‡ πœ‡ 11ΰ΄€ 1 𝜈 Knowles, 1982 (a) (b)

  14. ሢ Formation mechanisms for type I and II twins Type I: glide twin Type II: glide/rotation twin 1 = 1 𝑑 1 = 2 type I source 𝑂 type II 𝑑 𝐻ሢ type II 2 Ο† 1 = 1 2 Type I: glide twin source 𝛿 = 𝑐/β„Ž π‘‚αˆΆ 2 Ο† 𝐻/ ሢ 𝐻ሢ 𝑂 favours type I competitive mechanisms: High ሢ 1 1 = 2 2 𝛽 𝐻/ ሢ 𝑂 favours type II Low ሢ

  15. Type II: formation of glide/rotation twin disconnection glide plane, k 1 1 = 2 h twin parent Ʇ b /2 b /2 b unsheared region sheared region Ʇ 1 = 2 Ʇ Ʇ 𝛽 h 1 (a) Ʇ b g (c) Ʇ parent twin (b)

  16. Type II: growth Ʇ Ʇ 1 = 2 𝛿 = 𝑑 = 2ta (𝛽) Ʇ Ʇ Ʇ 2𝛽 Ʇ Ʇ Ʇ Ʇ b g Ʇ (ii) (ii) (i) (i) Ʇ (b) parent twin Read and Shockley, 1953 1 = 2 (a)

  17. ሢ Experimental observations: e.g. 𝛽 βˆ’ 𝑉 𝑯/ ሢ πŸ‘ 𝑐 β„Ž 𝛿 No. dist. 𝑂 1 1 type nm nm atoms " {17 ΰ΄€ 111 0.098 0.456 0.216 4 low 6 }" 1/2 < 512 > II 112 0.081 0.356 0.228 4 low " 1 ΰ΄€ 1/2 < 312 > 72 " II 1ΰ΄€ 110 0.048 0.161 0.299 2 high 30 1/2 < 310 > compound 10πœˆπ‘› Type II Twinning in Other Systems NiTi CuAlNi 𝛽 βˆ’ 𝑉, π·π‘β„Žπ‘œ 1953 TiPd devitrite

  18. Topological model of martensitic transformations

  19. PTMC TM β€’ low energy terraces (coherently strained epitaxial) d martensite β€’ two defect arrays: disconnections & LID β€’ distortion field of defect network accommodates coherency strains β€’ motion of all defects produces shape deformation p ’ invariant plane parent Shape deformation P 1 = RBP 2 = ( I + dp ’)

  20. Glissile Disconnections Ti 10 wt % Mo Klenov 2002 𝒄 β„Ž πœ‡ β„Ž(𝜈 ) 𝒄 β€’ 2 distinct atoms 𝒖 𝜈 β€’ steps cause habit plane to be inclined to terrace plane 𝒖 πœ‡ β€’ 𝒄 π‘œ also produces rotational distortions β€’ motion causes one-to-one atomic exchange between phases with different densities 𝒄 π‘œ = β„Ž πœ‡ βˆ’ β„Ž(𝜈)

  21. Distortion field of a Defect Array Z’ d h Lagrangian frame y’ X’ b b s b e habit plane ΞΎ

  22. Equilibrium: superposed coherency and defect array distortion fields  D Solve the Frank-Bilby Equation for the defect array with long-range 𝒏 , which compensates 𝑬 π’‹π’Œ 𝒅 . distortion matrix, 𝑬 π’‹π’Œ

  23. Habit plane orientation Ti : Ο† = 0.53Β° Ξ² crystal: Θ - Ο† ΞΈ = 11.4 Β° homogeneous isotropic Ξ± crystal: Θ + Ο† approximation Ο† ΞΈ inhomogeneous anisotropic case rotations partitioned according to relative elastic compliances TM solutions for habit plane orientation differ slightly from PTMC, unless 𝒄 π‘œ = 0

  24. Partitioning of rotations 𝑑 πœ— 𝑧𝑧 = 12.33% Cu Ag molecular dynamic simulation of static Cu(111)/Ag(111) interface, Wang et al. 2011 οͺ Cu οͺ Ag οͺ - οͺ Ag / οͺ Cu Case Isotropic, inhomogeneous 0.449 -0.698 1.15 1.55 Anisotropic 0.504 -0.853 1.36 1.69 MD 0.483 -0.929 1.41 1.92 MD (Artificial) 0.665 -0.659 1.312 0.97

  25. Orthorhombic to Monoclinic Transformation in ZrO 2 considerable shuffling: Principal strains on terrace plane 8 Zr & 16 O distinct ions ο₯ ο€½ ο₯ ο€½ 0 3 . 8 % xx yy

  26. synchronous motion of disconnections d D habit  terrace y Chen and Chiao, 1985  D  οƒΆ  οƒΆ 0 0 b  οƒ·  οƒ· xz x    y  ο€½  ο€½ D  οƒ·  οƒ· 0 0 b 0 0 n m yz y z D  οƒ· d  οƒ· ο₯  οƒΈ  οƒΈ 0 0 b zz z

  27. Lath martensite in ferrous alloys 1: terrace plane β€œ N- W OR” Mn IF steel: Morito et al.

  28. TEM: LID slip dislocations ~{575} G-T OR dislocations, ~10 ° from screw, with 1 / 2 [ 1 1 1 ]  spacing 2.8 -6.3 nm Fe-20Ni-5Mn (Sandvik and Wayman, 1983)

  29. TEM: Disconnections in near screw orientation Moritani et al. Fe-Ni-Mn [-101] Ξ³ projection

  30. Plate Martensite ~{121} Ogawa and Kajiwara, 2004 Fe-Ni-Mn

  31. Conclusions Topological modelling provides insights into mechanisms and kinetics. Twinning:  proposed new model of type II twin formation. Martensite:  predicted interface structures consistent with observations,  predicted habits differ slightly from PTMC.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend