blazars and cosmic bkgs
play

Blazars and cosmic bkgs. Fabrizio Tavecchio INAF-Oss. Astron. di - PowerPoint PPT Presentation

Blazars and cosmic bkgs. Fabrizio Tavecchio INAF-Oss. Astron. di Brera, Italy Introduction: AGNs, blazars Blazars: phenomenology Blazars: emission models Absorption of gamma-rays: backgrounds and the intergalactic B-field INTRODUCTION


  1. Blazars and cosmic bkgs. Fabrizio Tavecchio INAF-Oss. Astron. di Brera, Italy

  2. Introduction: AGNs, blazars Blazars: phenomenology Blazars: emission models Absorption of gamma-rays: backgrounds and the intergalactic B-field

  3. INTRODUCTION

  4. Almost all galaxies contain a massive black hole

  5. Almost all galaxies contain a massive black hole e.g. Ferrarese & Ford 2004

  6. Almost all galaxies contain a massive black hole 99% of them is (almost) silent (e.g. our Galaxy)

  7. Almost all galaxies contain a massive black hole 99% of them is (almost) silent (e.g. our Galaxy) 1% per cent is active (mostly radio-quiet AGNs): BH+accretion flow (disk): most of the emission in the UV-X-ray band 0.1% is radio loud: jets mostly visible in radio

  8. Powerful (FRII) Radiogalaxy: Cygnus A

  9. Weak (FRI) radiogalaxy: 3C31

  10. The radio-loud zoo is large and complex Messy classification! FRI, FRII, NLRG, BLRG, FSRQ, OVV, HPQ, BL Lac objects … Idea: Jet emission is anisotropic (beaming): viewing angle + intrinsic jet (and AGN) power

  11. “Unification scheme” Urry & Padovani 1995 Narrow Line Region Obscuring torus (hot dust) Broad Line Accretion flow/disk Region (T~1e4 K) BH

  12. “Unification scheme” Radiogalaxy (FRI, FRII), SSRQ Urry & Padovani 1995 Narrow Line Region Obscuring torus (hot dust) Broad Line Accretion flow/disk Region (T~1e4 K) BH

  13. “Unification scheme” Blazar (BL Lac [no BL], FSRQ [BL] ) Radiogalaxy (FRI, FRII), SSRQ Urry & Padovani 1995 Narrow Line Region Obscuring torus (hot dust) Broad Line Accretion flow/disk Region (T~1e4 K) BH

  14. Blazar characteristics: - Compact radio core, flat or inverted spectrum - Extreme variability (amplitude and t) at all frequencies - High optical and radio polarization FSRQs: bright broad (1000-10000 km/s) emission lines often evidences for the “blue bump” (acc. disc) BL Lacertae: weak (EW<5 Å) emission lines no signatures of accretion

  15. Evidences for relativistic beaming Superluminal motions Level of Compton emission High brightness temperatures Gamma-ray emission/absorption

  16. Superluminal motion Radio VLBI Optical HST

  17. Superluminal motion

  18. Jorstad et al. 2001

  19. Blazars: phenomenology

  20. The Fermi/LAT (0.1-100 GeV) sky 2LAC: (2 years) 395 BL Lac 310 FSRQ 5 radiogalaxy 2 SSRQ

  21. The VHE extragalactic gamma-ray sky 38 BL Lacertae 5 radiogalaxies 3 FSRQ (3C279, z=0.536)

  22. The bumpy spectral energy distribution The brightest source in Bonnoli et al. 2010 GeV!

  23. The erratic light-curve LAT lightcurve FT et al. 2010 See also Foschini et al. 2010 Abdo et al. 2010, arXiv:1007 .0483 for 3C454.3

  24. Rapid variability implies compact regions! IF Conical geometry

  25. The “blazar sequence” FSRQs Fossati et al. 1998; Donato et al. 2001 BL Lacs Blazars

  26. The “blazar sequence” FSRQs Fossati et al. 1998; Donato et al. 2001 CT BL Lacs AGILE Fermi Swift Blazars

  27. Blazars: emission models

  28. BL Lacs: “clean” jets Inefficient accretion flow (ADAF-ADIOS)* *but see Raiteri et al. 2009 Capetti et al. 2010 for BL Lac itself Blazars

  29. Emission Models Simplest scenario: SSC model (HBL) Other : external radiation (LBL, FSRQs, HBL?)

  30. The relativistic Doppler factor Special relat. � � 1 � = � (1 �� cos � ) Photon “compression”

  31. The relativistic Doppler factor Special relat. � � 1 � = � (1 �� cos � ) Photon “compression” L=L’ � 4 � = � ’ � � t= � t’/ �

  32. The relativistic Doppler factor Special relat. � � 1 � = � (1 �� cos � ) Photon “compression” L=L’ � 4 � = � ’ � � t= � t’/ �

  33. Coordinated variability at different � TeV Mkn 421 X-rays

  34. One-zone Synch. Self-Compton models � B � Tagliaferri et al. + MAGIC Coll. 2008

  35. One-zone Synch. Self-Compton models � B � Tagliaferri et al. + MAGIC Coll. 2008

  36. The simplest model - 1 Log N( � ) � b n 1 n 2 B R � e � Log � Log � L( � ) � s � 2 � 1 Log �

  37. The simplest model – 2a Log N( � ) Log U syn ( � ) � ’ s n 1 + � b � 1 n 2 � 2 Log � Log � Log � L( � ) � s � C � 1 � 2 � 1 � 2 Log �

  38. The simplest model – 2b Log U syn ( � ) Log N( � ) � ’ s � b + n 1 � 1 n 2 � 2 Log � Log � “Klein-Nishina regime” h � ’ s � b >m e c 2 Log � L( � ) � C � s � 1 � 2 � 1 � KN Log �

  39. The simplest model - 4 "Pure" SSC Mkn 421: a BL Lac

  40. In principle, in the simplest version of the SSC model, all the parameters can be constrained by quantities available from observations: 7 free parameters Model parameters: R B N o � b n 1 n 2 � Observational parameters: � s L s � C L C t var � 1 � 2 7 observational quantities

  41. FSRQs: the general scenario Accretion disk Blazars

  42. FSRQs: the general scenario X-ray corona Blazars

  43. FSRQs: the general scenario BLR Blazars

  44. FSRQs: the general scenario DUSTY TORUS Blazars

  45. FSRQs: the “canonical” scenario Dermer et al. 2009 Ghisellini, FT 2009 Sikora et al. 2009 e - � e - � e - � B DUSTY TORUS BLR Accretion disk X-ray corona Blazars

  46. The simplest model - 5 Log � U ext ( � ) Log N( � ) � ’ o Broad line region, � b + n 1 Disk � o n 2 � 2 � Log � Log � Log � F( � ) � s � C � 1 � 2 � 1 � 2 Log �

  47. The simplest model - 6 EC + SSC 3C 279 Ballo et al. 2002 B = 0.6 - 0.5 � = 17.8 - 12.3 � b = 550 - 600

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend