bjt amplifier basic operation
play

BJT amplifier: basic operation V CC I C I C R C V CC I C R C V o I E - PowerPoint PPT Presentation

BJT amplifier: basic operation V CC I C I C R C V CC I C R C V o I E V B V B I B t I E 0 0.2 0.4 0.6 0.8 V BE t M. B. Patil, IIT Bombay BJT amplifier: basic operation V CC I C I C R C V CC I C R C V o I E V B V B I B t I E 0 0.2


  1. BJT amplifier saturation 5 linear V CC / R C I B5 4 5 V V CC I B4 V o (Volts) 3 R C I B3 I C V o C 2 B I B2 V i R B 1 E I B1 0 0 V CC 0 0 1 2 3 4 5 V CE ( V o ) V i (Volts) * The key challenges in realizing this amplifier in practice are M. B. Patil, IIT Bombay

  2. BJT amplifier saturation 5 linear V CC / R C I B5 4 5 V V CC I B4 V o (Volts) 3 R C I B3 I C V o C 2 B I B2 V i R B 1 E I B1 0 0 V CC 0 0 1 2 3 4 5 V CE ( V o ) V i (Volts) * The key challenges in realizing this amplifier in practice are - adjusting the input DC bias to ensure that the BJT remains in the linear (active) region with a certain bias value of V BE (or I C ). M. B. Patil, IIT Bombay

  3. BJT amplifier saturation 5 linear V CC / R C I B5 4 5 V V CC I B4 V o (Volts) 3 R C I B3 I C V o C 2 B I B2 V i R B 1 E I B1 0 0 V CC 0 0 1 2 3 4 5 V CE ( V o ) V i (Volts) * The key challenges in realizing this amplifier in practice are - adjusting the input DC bias to ensure that the BJT remains in the linear (active) region with a certain bias value of V BE (or I C ). - mixing the input DC bias with the signal voltage. M. B. Patil, IIT Bombay

  4. BJT amplifier saturation 5 linear V CC / R C I B5 4 5 V V CC I B4 V o (Volts) 3 R C I B3 I C V o C 2 B I B2 V i R B 1 E I B1 0 0 V CC 0 0 1 2 3 4 5 V CE ( V o ) V i (Volts) * The key challenges in realizing this amplifier in practice are - adjusting the input DC bias to ensure that the BJT remains in the linear (active) region with a certain bias value of V BE (or I C ). - mixing the input DC bias with the signal voltage. * The first issue is addressed by using a suitable biasing scheme, and the second by using “coupling” capacitors. M. B. Patil, IIT Bombay

  5. BJT amplifier: a simple biasing scheme 15 V V CC R C R B 1 k C B E “Biasing” an amplifier ⇒ selection of component values for a certain DC value of I C (or V BE ) (i.e., when no signal is applied). M. B. Patil, IIT Bombay

  6. BJT amplifier: a simple biasing scheme 15 V V CC R C R B 1 k C B E “Biasing” an amplifier ⇒ selection of component values for a certain DC value of I C (or V BE ) (i.e., when no signal is applied). Equivalently, we may bias an amplifier for a certain DC value of V CE , since I C and V CE are related: V CE + I C R C = V CC . M. B. Patil, IIT Bombay

  7. BJT amplifier: a simple biasing scheme 15 V V CC R C R B 1 k C B E “Biasing” an amplifier ⇒ selection of component values for a certain DC value of I C (or V BE ) (i.e., when no signal is applied). Equivalently, we may bias an amplifier for a certain DC value of V CE , since I C and V CE are related: V CE + I C R C = V CC . As an example, for R C = 1 k, β = 100, let us calculate R B for I C = 3 . 3 m A , assuming the BJT to be operating in the active mode. M. B. Patil, IIT Bombay

  8. BJT amplifier: a simple biasing scheme 15 V V CC R C R B 1 k C B E “Biasing” an amplifier ⇒ selection of component values for a certain DC value of I C (or V BE ) (i.e., when no signal is applied). Equivalently, we may bias an amplifier for a certain DC value of V CE , since I C and V CE are related: V CE + I C R C = V CC . As an example, for R C = 1 k, β = 100, let us calculate R B for I C = 3 . 3 m A , assuming the BJT to be operating in the active mode. I B = I C β = 3 . 3 m A = 33 µ A = V CC − V BE = 15 − 0 . 7 100 R B R B M. B. Patil, IIT Bombay

  9. BJT amplifier: a simple biasing scheme 15 V V CC R C R B 1 k C B E “Biasing” an amplifier ⇒ selection of component values for a certain DC value of I C (or V BE ) (i.e., when no signal is applied). Equivalently, we may bias an amplifier for a certain DC value of V CE , since I C and V CE are related: V CE + I C R C = V CC . As an example, for R C = 1 k, β = 100, let us calculate R B for I C = 3 . 3 m A , assuming the BJT to be operating in the active mode. I B = I C β = 3 . 3 m A = 33 µ A = V CC − V BE = 15 − 0 . 7 100 R B R B → R B = 14 . 3 V 33 µ A = 430 kΩ . M. B. Patil, IIT Bombay

  10. BJT amplifier: a simple biasing scheme (continued) 15 V V CC R C R B 1 k C B E With R B = 430 k, we expect I C = 3 . 3 m A , assuming β = 100. M. B. Patil, IIT Bombay

  11. BJT amplifier: a simple biasing scheme (continued) 15 V V CC R C R B 1 k C B E With R B = 430 k, we expect I C = 3 . 3 m A , assuming β = 100. However, in practice, there is a substantial variation in the β value (even for the same transistor type). The manufacturer may specify the nominal value of β as 100, but the actual value may be 150, for example. M. B. Patil, IIT Bombay

  12. BJT amplifier: a simple biasing scheme (continued) 15 V V CC R C R B 1 k C B E With R B = 430 k, we expect I C = 3 . 3 m A , assuming β = 100. However, in practice, there is a substantial variation in the β value (even for the same transistor type). The manufacturer may specify the nominal value of β as 100, but the actual value may be 150, for example. With β = 150, the actual I C is, I C = β × V CC − V BE = 150 × (15 − 0 . 7) V = 5 m A , R B 430 k which is significantly different than the intended value, viz., 3.3 m A . M. B. Patil, IIT Bombay

  13. BJT amplifier: a simple biasing scheme (continued) 15 V V CC R C R B 1 k C B E With R B = 430 k, we expect I C = 3 . 3 m A , assuming β = 100. However, in practice, there is a substantial variation in the β value (even for the same transistor type). The manufacturer may specify the nominal value of β as 100, but the actual value may be 150, for example. With β = 150, the actual I C is, I C = β × V CC − V BE = 150 × (15 − 0 . 7) V = 5 m A , R B 430 k which is significantly different than the intended value, viz., 3.3 m A . → need a biasing scheme which is not so sensitive to β . M. B. Patil, IIT Bombay

  14. BJT amplifier: improved biasing scheme 10 V V CC R C 3.6 k R 1 10 k I C I B I E R 2 R E 2.2 k 1 k

  15. BJT amplifier: improved biasing scheme 10 V V CC R C R C 3.6 k R 1 10 k I C I C R 1 V CC I B I B I E I E R 2 V CC R 2 R E R E 2.2 k 1 k

  16. BJT amplifier: improved biasing scheme 10 V V CC R C R C R C 3.6 k R 1 10 k I C I C I C R 1 R Th V CC V CC I B I B I B I E I E I E R 2 V CC R 2 V Th R E R E R E 2.2 k 1 k M. B. Patil, IIT Bombay

  17. BJT amplifier: improved biasing scheme 10 V V CC R C R C R C 3.6 k R 1 10 k I C I C I C R 1 R Th V CC V CC I B I B I B I E I E I E R 2 V CC R 2 V Th R E R E R E 2.2 k 1 k R 2 2 . 2 k V Th = V CC = 10 k + 2 . 2 k × 10 V = 1 . 8 V , R Th = R 1 � R 2 = 1 . 8 k R 1 + R 2 M. B. Patil, IIT Bombay

  18. BJT amplifier: improved biasing scheme 10 V V CC R C R C R C 3.6 k R 1 10 k I C I C I C R 1 R Th V CC V CC I B I B I B I E I E I E R 2 V CC R 2 V Th R E R E R E 2.2 k 1 k R 2 2 . 2 k V Th = V CC = 10 k + 2 . 2 k × 10 V = 1 . 8 V , R Th = R 1 � R 2 = 1 . 8 k R 1 + R 2 Assuming the BJT to be in the active mode, KVL: V Th = R Th I B + V BE + R E I E = R Th I B + V BE + ( β + 1) I B R E M. B. Patil, IIT Bombay

  19. BJT amplifier: improved biasing scheme 10 V V CC R C R C R C 3.6 k R 1 10 k I C I C I C R 1 R Th V CC V CC I B I B I B I E I E I E R 2 V CC R 2 V Th R E R E R E 2.2 k 1 k R 2 2 . 2 k V Th = V CC = 10 k + 2 . 2 k × 10 V = 1 . 8 V , R Th = R 1 � R 2 = 1 . 8 k R 1 + R 2 Assuming the BJT to be in the active mode, KVL: V Th = R Th I B + V BE + R E I E = R Th I B + V BE + ( β + 1) I B R E V Th − V BE β ( V Th − V BE ) → I B = , I C = β I B = . R Th + ( β + 1) R E R Th + ( β + 1) R E M. B. Patil, IIT Bombay

  20. BJT amplifier: improved biasing scheme 10 V V CC R C R C R C 3.6 k R 1 10 k I C I C I C R 1 R Th V CC V CC I B I B I B I E I E I E R 2 V CC R 2 V Th R E R E R E 2.2 k 1 k R 2 2 . 2 k V Th = V CC = 10 k + 2 . 2 k × 10 V = 1 . 8 V , R Th = R 1 � R 2 = 1 . 8 k R 1 + R 2 Assuming the BJT to be in the active mode, KVL: V Th = R Th I B + V BE + R E I E = R Th I B + V BE + ( β + 1) I B R E V Th − V BE β ( V Th − V BE ) → I B = , I C = β I B = . R Th + ( β + 1) R E R Th + ( β + 1) R E For β = 100, I C =1.07 m A . M. B. Patil, IIT Bombay

  21. BJT amplifier: improved biasing scheme 10 V V CC R C R C R C 3.6 k R 1 10 k I C I C I C R 1 R Th V CC V CC I B I B I B I E I E I E R 2 V CC R 2 V Th R E R E R E 2.2 k 1 k R 2 2 . 2 k V Th = V CC = 10 k + 2 . 2 k × 10 V = 1 . 8 V , R Th = R 1 � R 2 = 1 . 8 k R 1 + R 2 Assuming the BJT to be in the active mode, KVL: V Th = R Th I B + V BE + R E I E = R Th I B + V BE + ( β + 1) I B R E V Th − V BE β ( V Th − V BE ) → I B = , I C = β I B = . R Th + ( β + 1) R E R Th + ( β + 1) R E For β = 100, I C =1.07 m A . For β = 200, I C =1.085 m A . M. B. Patil, IIT Bombay

  22. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C 3.6 k R 1 10 k I C I B I E R 2 R E 2.2 k 1 k With I C = 1 . 1 m A , the various DC (“bias”) voltages are

  23. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C 3.6 k R 1 10 k I C I B I E R 2 R E 2.2 k 1 k With I C = 1 . 1 m A , the various DC (“bias”) voltages are V E = I E R E ≈ 1 . 1 m A × 1 k = 1 . 1 V ,

  24. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C 3.6 k R 1 10 k I C I B 1.1 V I E R 2 R E 2.2 k 1 k With I C = 1 . 1 m A , the various DC (“bias”) voltages are V E = I E R E ≈ 1 . 1 m A × 1 k = 1 . 1 V ,

  25. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C 3.6 k R 1 10 k I C I B 1.1 V I E R 2 R E 2.2 k 1 k With I C = 1 . 1 m A , the various DC (“bias”) voltages are V E = I E R E ≈ 1 . 1 m A × 1 k = 1 . 1 V , V B = V E + V BE ≈ 1 . 1 V + 0 . 7 V = 1 . 8 V ,

  26. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C 3.6 k R 1 10 k I C 1.8 V I B 1.1 V I E R 2 R E 2.2 k 1 k With I C = 1 . 1 m A , the various DC (“bias”) voltages are V E = I E R E ≈ 1 . 1 m A × 1 k = 1 . 1 V , V B = V E + V BE ≈ 1 . 1 V + 0 . 7 V = 1 . 8 V ,

  27. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C 3.6 k R 1 10 k I C 1.8 V I B 1.1 V I E R 2 R E 2.2 k 1 k With I C = 1 . 1 m A , the various DC (“bias”) voltages are V E = I E R E ≈ 1 . 1 m A × 1 k = 1 . 1 V , V B = V E + V BE ≈ 1 . 1 V + 0 . 7 V = 1 . 8 V , V C = V CC − I C R C = 10 V − 1 . 1 m A × 3 . 6 k ≈ 6 V ,

  28. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C 3.6 k R 1 10 k I C 6 V 1.8 V I B 1.1 V I E R 2 R E 2.2 k 1 k With I C = 1 . 1 m A , the various DC (“bias”) voltages are V E = I E R E ≈ 1 . 1 m A × 1 k = 1 . 1 V , V B = V E + V BE ≈ 1 . 1 V + 0 . 7 V = 1 . 8 V , V C = V CC − I C R C = 10 V − 1 . 1 m A × 3 . 6 k ≈ 6 V ,

  29. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C 3.6 k R 1 10 k I C 6 V 1.8 V I B 1.1 V I E R 2 R E 2.2 k 1 k With I C = 1 . 1 m A , the various DC (“bias”) voltages are V E = I E R E ≈ 1 . 1 m A × 1 k = 1 . 1 V , V B = V E + V BE ≈ 1 . 1 V + 0 . 7 V = 1 . 8 V , V C = V CC − I C R C = 10 V − 1 . 1 m A × 3 . 6 k ≈ 6 V , V CE = V C − V E = 6 − 1 . 1 = 4 . 9 V . M. B. Patil, IIT Bombay

  30. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C R 1 3.6 k 10 k I C I B I E R 2 R E 2.2 k 1 k A quick estimate of the bias values can be obtained by ignoring I B (which is fair if β is large). In that case, M. B. Patil, IIT Bombay

  31. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C R 1 3.6 k 10 k I C I B I E R 2 R E 2.2 k 1 k A quick estimate of the bias values can be obtained by ignoring I B (which is fair if β is large). In that case, R 2 2 . 2 k V B = V CC = 10 k + 2 . 2 k × 10 V = 1 . 8 V . R 1 + R 2 M. B. Patil, IIT Bombay

  32. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C R 1 3.6 k 10 k I C I B I E R 2 R E 2.2 k 1 k A quick estimate of the bias values can be obtained by ignoring I B (which is fair if β is large). In that case, R 2 2 . 2 k V B = V CC = 10 k + 2 . 2 k × 10 V = 1 . 8 V . R 1 + R 2 V E = V B − V BE ≈ 1 . 8 V − 0 . 7 V = 1 . 1 V . M. B. Patil, IIT Bombay

  33. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C R 1 3.6 k 10 k I C I B I E R 2 R E 2.2 k 1 k A quick estimate of the bias values can be obtained by ignoring I B (which is fair if β is large). In that case, R 2 2 . 2 k V B = V CC = 10 k + 2 . 2 k × 10 V = 1 . 8 V . R 1 + R 2 V E = V B − V BE ≈ 1 . 8 V − 0 . 7 V = 1 . 1 V . I E = V E = 1 . 1 V = 1 . 1 m A . R E 1 k M. B. Patil, IIT Bombay

  34. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C R 1 3.6 k 10 k I C I B I E R 2 R E 2.2 k 1 k A quick estimate of the bias values can be obtained by ignoring I B (which is fair if β is large). In that case, R 2 2 . 2 k V B = V CC = 10 k + 2 . 2 k × 10 V = 1 . 8 V . R 1 + R 2 V E = V B − V BE ≈ 1 . 8 V − 0 . 7 V = 1 . 1 V . I E = V E = 1 . 1 V = 1 . 1 m A . R E 1 k I C = α I E ≈ I E = 1 . 1 m A . M. B. Patil, IIT Bombay

  35. BJT amplifier: improved biasing scheme (continued) 10 V V CC R C R 1 3.6 k 10 k I C I B I E R 2 R E 2.2 k 1 k A quick estimate of the bias values can be obtained by ignoring I B (which is fair if β is large). In that case, R 2 2 . 2 k V B = V CC = 10 k + 2 . 2 k × 10 V = 1 . 8 V . R 1 + R 2 V E = V B − V BE ≈ 1 . 8 V − 0 . 7 V = 1 . 1 V . I E = V E = 1 . 1 V = 1 . 1 m A . R E 1 k I C = α I E ≈ I E = 1 . 1 m A . V CE = V CC − I C R C − I E R E = 10 V − (3 . 6 k × 1 . 1 m A ) − (1 k × 1 . 1 m A ) ≈ 5 V . M. B. Patil, IIT Bombay

  36. Adding signal to bias V CC R C R 1 v B R 2 R E

  37. Adding signal to bias V CC R C R 1 v B R 2 R E * As we have seen earlier, the input signal v s ( t ) = � V sin ω t (for example) needs to be mixed with the desired bias value V B so that the net voltage at the base is v B ( t ) = V B + � V sin ω t .

  38. Adding signal to bias V CC R C R 1 v B C B v s R 2 R E * As we have seen earlier, the input signal v s ( t ) = � V sin ω t (for example) needs to be mixed with the desired bias value V B so that the net voltage at the base is v B ( t ) = V B + � V sin ω t . * This can be achieved by using a coupling capacitor C B .

  39. Adding signal to bias V CC R C R 1 v B C B v s R 2 R E * As we have seen earlier, the input signal v s ( t ) = � V sin ω t (for example) needs to be mixed with the desired bias value V B so that the net voltage at the base is v B ( t ) = V B + � V sin ω t . * This can be achieved by using a coupling capacitor C B . * Let us consider a simple circuit to illustrate how a coupling capacitor works. M. B. Patil, IIT Bombay

  40. RC circuit with DC + AC sources v C R 2 A v A v s (t) R 1 V 0 (DC) V m sin ω t We are interested in the solution (currents and voltages) in the “sinusoidal steady state” when the exponential transients have vanished and each quantity x ( t ) is of the form X 0 (constant) + X m sin( ω t + α ). M. B. Patil, IIT Bombay

  41. RC circuit with DC + AC sources v C R 2 A v A v s (t) R 1 V 0 (DC) V m sin ω t We are interested in the solution (currents and voltages) in the “sinusoidal steady state” when the exponential transients have vanished and each quantity x ( t ) is of the form X 0 (constant) + X m sin( ω t + α ). There are two ways to obtain the solution: M. B. Patil, IIT Bombay

  42. RC circuit with DC + AC sources v C R 2 A v A v s (t) R 1 V 0 (DC) V m sin ω t We are interested in the solution (currents and voltages) in the “sinusoidal steady state” when the exponential transients have vanished and each quantity x ( t ) is of the form X 0 (constant) + X m sin( ω t + α ). There are two ways to obtain the solution: (1) Solve the circuit equations directly: v A ( t ) + v A ( t ) − V 0 = C d dt ( v s ( t ) − v A ( t )) . R 1 R 2 M. B. Patil, IIT Bombay

  43. RC circuit with DC + AC sources v C R 2 A v A v s (t) R 1 V 0 (DC) V m sin ω t We are interested in the solution (currents and voltages) in the “sinusoidal steady state” when the exponential transients have vanished and each quantity x ( t ) is of the form X 0 (constant) + X m sin( ω t + α ). There are two ways to obtain the solution: (1) Solve the circuit equations directly: v A ( t ) + v A ( t ) − V 0 = C d dt ( v s ( t ) − v A ( t )) . R 1 R 2 (2) Use the DC circuit + AC circuit approach. M. B. Patil, IIT Bombay

  44. Resistor in sinusoidal steady state v R (t) R i R (t) M. B. Patil, IIT Bombay

  45. Resistor in sinusoidal steady state v R (t) R i R (t) Let v R ( t ) = V R + v r ( t ) where V R = constant, v r ( t ) = � V R sin ( ω t + α ), = constant, i r ( t ) = � i R ( t ) = I R + i r ( t ) where I R I R sin ( ω t + α ). M. B. Patil, IIT Bombay

  46. Resistor in sinusoidal steady state v R (t) R i R (t) Let v R ( t ) = V R + v r ( t ) where V R = constant, v r ( t ) = � V R sin ( ω t + α ), = constant, i r ( t ) = � i R ( t ) = I R + i r ( t ) where I R I R sin ( ω t + α ). Since v R ( t ) = R × i R ( t ), we get [ V R + v r ( t )] = R × [ I R + i r ( t )]. M. B. Patil, IIT Bombay

  47. Resistor in sinusoidal steady state v R (t) R i R (t) Let v R ( t ) = V R + v r ( t ) where V R = constant, v r ( t ) = � V R sin ( ω t + α ), = constant, i r ( t ) = � i R ( t ) = I R + i r ( t ) where I R I R sin ( ω t + α ). Since v R ( t ) = R × i R ( t ), we get [ V R + v r ( t )] = R × [ I R + i r ( t )]. This relationship can be split into two: V R = R × I R , and v r ( t ) = R × i r ( t ). M. B. Patil, IIT Bombay

  48. Resistor in sinusoidal steady state v R (t) R i R (t) Let v R ( t ) = V R + v r ( t ) where V R = constant, v r ( t ) = � V R sin ( ω t + α ), = constant, i r ( t ) = � i R ( t ) = I R + i r ( t ) where I R I R sin ( ω t + α ). Since v R ( t ) = R × i R ( t ), we get [ V R + v r ( t )] = R × [ I R + i r ( t )]. This relationship can be split into two: V R = R × I R , and v r ( t ) = R × i r ( t ). In other words, a resistor can be described by V R v r (t) R R I R i r (t) DC AC M. B. Patil, IIT Bombay

  49. Capacitor in sinusoidal steady state v C (t) i C (t) C M. B. Patil, IIT Bombay

  50. Capacitor in sinusoidal steady state v C (t) i C (t) C Let v C ( t ) = V C + v c ( t ) where V C = constant, v c ( t ) = � V C sin ( ω t + α ), = constant, i c ( t ) = � i C ( t ) = I C + i c ( t ) where I C I C sin ( ω t + β ). M. B. Patil, IIT Bombay

  51. Capacitor in sinusoidal steady state v C (t) i C (t) C Let v C ( t ) = V C + v c ( t ) where V C = constant, v c ( t ) = � V C sin ( ω t + α ), = constant, i c ( t ) = � i C ( t ) = I C + i c ( t ) where I C I C sin ( ω t + β ). Since i C ( t ) = C dv C dt , we get [ I C + i c ( t )] = C d dt ( V C + v c ( t )). M. B. Patil, IIT Bombay

  52. Capacitor in sinusoidal steady state v C (t) i C (t) C Let v C ( t ) = V C + v c ( t ) where V C = constant, v c ( t ) = � V C sin ( ω t + α ), = constant, i c ( t ) = � i C ( t ) = I C + i c ( t ) where I C I C sin ( ω t + β ). Since i C ( t ) = C dv C dt , we get [ I C + i c ( t )] = C d dt ( V C + v c ( t )). This relationship can be split into two: I C = C dV C = 0, and i c ( t ) = C dv c dt . dt M. B. Patil, IIT Bombay

  53. Capacitor in sinusoidal steady state v C (t) i C (t) C Let v C ( t ) = V C + v c ( t ) where V C = constant, v c ( t ) = � V C sin ( ω t + α ), = constant, i c ( t ) = � i C ( t ) = I C + i c ( t ) where I C I C sin ( ω t + β ). Since i C ( t ) = C dv C dt , we get [ I C + i c ( t )] = C d dt ( V C + v c ( t )). This relationship can be split into two: I C = C dV C = 0, and i c ( t ) = C dv c dt . dt In other words, a capacitor can be described by V C v c (t) I C i c (t) C DC AC M. B. Patil, IIT Bombay

  54. Voltage sources in sinusoidal steady state DC voltage source: v S (t) V S v s (t) i S (t) I S i s (t) v S (t) = V S + 0 DC AC M. B. Patil, IIT Bombay

  55. Voltage sources in sinusoidal steady state DC voltage source: v S (t) V S v s (t) i S (t) I S i s (t) v S (t) = V S + 0 DC AC AC voltage source: v S (t) v s (t) V S i S (t) I S i s (t) v S (t) = 0 + v s (t) DC AC M. B. Patil, IIT Bombay

  56. RC circuit with DC + AC sources DC circuit AC circuit v C V C v c R 2 R 2 R 2 A A A v A v a V A v s (t) v s (t) R 1 R 1 R 1 V 0 (DC) V 0 V m sin ω t V m sin ω t M. B. Patil, IIT Bombay

  57. RC circuit with DC + AC sources DC circuit AC circuit v C V C v c R 2 R 2 R 2 A A A v A v a V A v s (t) v s (t) R 1 R 1 R 1 V 0 (DC) V 0 V m sin ω t V m sin ω t V A + V A − V 0 DC circuit: = 0. (1) R 1 R 2 M. B. Patil, IIT Bombay

  58. RC circuit with DC + AC sources DC circuit AC circuit v C V C v c R 2 R 2 R 2 A A A v A v a V A v s (t) v s (t) R 1 R 1 R 1 V 0 (DC) V 0 V m sin ω t V m sin ω t V A + V A − V 0 DC circuit: = 0. (1) R 1 R 2 v a + v a = C d AC circuit: dt ( v s − v a ). (2) R 1 R 2 M. B. Patil, IIT Bombay

  59. RC circuit with DC + AC sources DC circuit AC circuit v C V C v c R 2 R 2 R 2 A A A v A v a V A v s (t) v s (t) R 1 R 1 R 1 V 0 (DC) V 0 V m sin ω t V m sin ω t V A + V A − V 0 DC circuit: = 0. (1) R 1 R 2 v a + v a = C d AC circuit: dt ( v s − v a ). (2) R 1 R 2 V A + v a + V A + v a − V 0 = C d Adding (1) and (2), we get dt ( v s − v a ). (3) R 1 R 2 M. B. Patil, IIT Bombay

  60. RC circuit with DC + AC sources DC circuit AC circuit v C V C v c R 2 R 2 R 2 A A A v A v a V A v s (t) v s (t) R 1 R 1 R 1 V 0 (DC) V 0 V m sin ω t V m sin ω t V A + V A − V 0 DC circuit: = 0. (1) R 1 R 2 v a + v a = C d AC circuit: dt ( v s − v a ). (2) R 1 R 2 V A + v a + V A + v a − V 0 = C d Adding (1) and (2), we get dt ( v s − v a ). (3) R 1 R 2 Compare with the equation obtained directly from the original circuit: v A + v A − V 0 = C d dt ( v s − v A ). (4) R 1 R 2 M. B. Patil, IIT Bombay

  61. RC circuit with DC + AC sources DC circuit AC circuit v C V C v c R 2 R 2 R 2 A A A v A v a V A v s (t) v s (t) R 1 R 1 R 1 V 0 (DC) V 0 V m sin ω t V m sin ω t V A + V A − V 0 DC circuit: = 0. (1) R 1 R 2 v a + v a = C d AC circuit: dt ( v s − v a ). (2) R 1 R 2 V A + v a + V A + v a − V 0 = C d Adding (1) and (2), we get dt ( v s − v a ). (3) R 1 R 2 Compare with the equation obtained directly from the original circuit: v A + v A − V 0 = C d dt ( v s − v A ). (4) R 1 R 2 Eqs. (3) and (4) are identical since v A = V A + v a . M. B. Patil, IIT Bombay

  62. RC circuit with DC + AC sources DC circuit AC circuit v C V C v c R 2 R 2 R 2 A A A v A v a V A v s (t) v s (t) R 1 R 1 R 1 V 0 (DC) V 0 V m sin ω t V m sin ω t V A + V A − V 0 DC circuit: = 0. (1) R 1 R 2 v a + v a = C d AC circuit: dt ( v s − v a ). (2) R 1 R 2 V A + v a + V A + v a − V 0 = C d Adding (1) and (2), we get dt ( v s − v a ). (3) R 1 R 2 Compare with the equation obtained directly from the original circuit: v A + v A − V 0 = C d dt ( v s − v A ). (4) R 1 R 2 Eqs. (3) and (4) are identical since v A = V A + v a . → Instead of computing v A ( t ) directly, we can compute V A and v a ( t ) separately, and then use v A ( t ) = V A + v a ( t ). M. B. Patil, IIT Bombay

  63. Common-emitter amplifier coupling R C capacitor R 1 coupling capacitor V CC C C C B R L v s R 2 load R E resistor C E bypass capacitor

  64. Common-emitter amplifier coupling R C R C capacitor R 1 R 1 coupling capacitor V CC C C V CC C B R L v s R 2 R 2 load R E R E resistor C E bypass DC circuit capacitor

  65. Common-emitter amplifier coupling R C R C R C capacitor R 1 R 1 R 1 coupling capacitor V CC C C C C V CC AND C B C B R L R L v s R 2 R 2 v s R 2 load R E R E R E resistor C E C E bypass DC circuit AC circuit capacitor

  66. Common-emitter amplifier coupling R C R C R C capacitor R 1 R 1 R 1 coupling capacitor V CC C C C C V CC AND C B C B R L R L v s R 2 R 2 v s R 2 load R E R E R E resistor C E C E bypass DC circuit AC circuit capacitor * The coupling capacitors ensure that the signal source and the load resistor do not affect the DC bias of the amplifier. (We will see the purpose of C E a little later.)

  67. Common-emitter amplifier coupling R C R C R C capacitor R 1 R 1 R 1 coupling capacitor V CC C C C C V CC AND C B C B R L R L v s R 2 R 2 v s R 2 load R E R E R E resistor C E C E bypass DC circuit AC circuit capacitor * The coupling capacitors ensure that the signal source and the load resistor do not affect the DC bias of the amplifier. (We will see the purpose of C E a little later.) * This enables us to bias the amplifier without worrying about what load it is going to drive. M. B. Patil, IIT Bombay

  68. Common-emitter amplifier: AC circuit R C R 1 C C C B R L v s R 2 R E C E

  69. Common-emitter amplifier: AC circuit R C R 1 C C C B R L v s R 2 R E C E * The coupling and bypass capacitors are “large” (typically, a few µ F ), and at frequencies of interest, their impedance is small. For example, for C = 10 µ F , f = 1 kHz, 1 Z C = 2 π × 10 3 × 10 × 10 − 6 = 16 Ω, which is much smaller than typical values of R 1 , R 2 , R C , R E (a few kΩ). ⇒ C B , C C , C E can be replaced by short circuits at the frequencies of interest.

  70. Common-emitter amplifier: AC circuit R C R C R 1 R 1 C C C B R L R L v s R 2 v s R 2 R E C E * The coupling and bypass capacitors are “large” (typically, a few µ F ), and at frequencies of interest, their impedance is small. For example, for C = 10 µ F , f = 1 kHz, 1 Z C = 2 π × 10 3 × 10 × 10 − 6 = 16 Ω, which is much smaller than typical values of R 1 , R 2 , R C , R E (a few kΩ). ⇒ C B , C C , C E can be replaced by short circuits at the frequencies of interest.

  71. Common-emitter amplifier: AC circuit R C R C R 1 R 1 C C C B R L R L v s R 2 v s R 2 R E C E * The coupling and bypass capacitors are “large” (typically, a few µ F ), and at frequencies of interest, their impedance is small. For example, for C = 10 µ F , f = 1 kHz, 1 Z C = 2 π × 10 3 × 10 × 10 − 6 = 16 Ω, which is much smaller than typical values of R 1 , R 2 , R C , R E (a few kΩ). ⇒ C B , C C , C E can be replaced by short circuits at the frequencies of interest. * The circuit can be re-drawn in a more friendly format.

  72. Common-emitter amplifier: AC circuit R C R C R 1 R 1 C C C B R L R L R C R L v s R 2 v s R 2 v s R 1 R 2 R E C E * The coupling and bypass capacitors are “large” (typically, a few µ F ), and at frequencies of interest, their impedance is small. For example, for C = 10 µ F , f = 1 kHz, 1 Z C = 2 π × 10 3 × 10 × 10 − 6 = 16 Ω, which is much smaller than typical values of R 1 , R 2 , R C , R E (a few kΩ). ⇒ C B , C C , C E can be replaced by short circuits at the frequencies of interest. * The circuit can be re-drawn in a more friendly format.

  73. Common-emitter amplifier: AC circuit R C R C R 1 R 1 C C C B R L R L R C R L v s R 2 v s R 2 v s R 1 R 2 R E C E * The coupling and bypass capacitors are “large” (typically, a few µ F ), and at frequencies of interest, their impedance is small. For example, for C = 10 µ F , f = 1 kHz, 1 Z C = 2 π × 10 3 × 10 × 10 − 6 = 16 Ω, which is much smaller than typical values of R 1 , R 2 , R C , R E (a few kΩ). ⇒ C B , C C , C E can be replaced by short circuits at the frequencies of interest. * The circuit can be re-drawn in a more friendly format. * We now need to figure out the AC description of a BJT. M. B. Patil, IIT Bombay

  74. BJT: AC model C V m = 10 mV i C 1.1 V m = 5 mV V m = 2 mV B i C (mA) 0.9 i B i E v BE 0.7 E v BE (t) = V 0 + V m sin ω t 0.5 0 0.2 0.4 0.6 0.8 1 V 0 = 0.65 V, f = 1 kHz t (msec) M. B. Patil, IIT Bombay

  75. BJT: AC model C V m = 10 mV i C 1.1 V m = 5 mV V m = 2 mV B i C (mA) 0.9 i B i E v BE 0.7 E v BE (t) = V 0 + V m sin ω t 0.5 0 0.2 0.4 0.6 0.8 1 V 0 = 0.65 V, f = 1 kHz t (msec) * As the v BE amplitude increases, the shape of i C ( t ) deviates from a sinusoid → distortion. M. B. Patil, IIT Bombay

  76. BJT: AC model C V m = 10 mV i C 1.1 V m = 5 mV V m = 2 mV B i C (mA) 0.9 i B i E v BE 0.7 E v BE (t) = V 0 + V m sin ω t 0.5 0 0.2 0.4 0.6 0.8 1 V 0 = 0.65 V, f = 1 kHz t (msec) * As the v BE amplitude increases, the shape of i C ( t ) deviates from a sinusoid → distortion. * If v be ( t ), i.e., the time-varying part of v BE , is kept small, i C varies linearly with v BE . How small? Let us look at this in more detail. M. B. Patil, IIT Bombay

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend