b y z
play

B = Y Z Z Z where y z 1 1 y z - PowerPoint PPT Presentation

ARMAX Models Vector (multivariate) regression: output vector y t, 1 y t, 2 y t = . . . y t,k input vector z t, 1 z t, 2 z t = . . .


  1. ARMAX Models • Vector (multivariate) regression: – output vector   y t, 1 y t, 2   y t =  .  . .     y t,k – input vector   z t, 1 z t, 2   z t =  .  . .     z t,r 1

  2. • Regression equation: y t,i = β i, 1 z t, 1 + β i, 2 z t, 2 + · · · + β i,r z t,r + w t,i or in vector form y t = Bz t + w t . • Here { w t } is multivariate white noise: E( w t ) = 0 ,  h = 0 Σ w ,  � � cov = w t + h , w t h � = 0 . 0 ,  2

  3. • Given observations for t = 1 , 2 , . . . , n , the least squares es- timator of B , also the maximum likelihood estimator when { w t } is Gaussian white noise, is � − 1 , B = Y ′ Z � Z ′ Z ˆ where y ′ z ′     1 1 y ′ z ′     2 2 Y =  and Z =  .   .  . . . .        y ′ z ′ n n • ML estimate of Σ w (replace n with ( n − r ) for unbiased): n Σ w = 1 � ′ . � � � ˆ y t − ˆ y t − ˆ � Bz t Bz t n t =1 3

  4. • Information criteria: – Akaike: � � � + 2 kr + k ( k + 1) � � � ˆ AIC = ln ; Σ w � � 2 n – Schwarz: � � � + ln n kr + k ( k + 1) � � � ˆ SIC = ln Σ w , � � 2 n – Bias-corrected AIC (incorrect in Shumway & Stoffer): � � 2 kr + k ( k + 1) � � � ˆ AICc = ln � + Σ w . � � n − k − r − 1 2 4

  5. Vector Autoregression • E.g., VAR(1): x t = α + Φx t − 1 + w t . • Here Φ is a k × k coefficient matrix, and { w r } is Gaussian multivariate white noise. • This resembles the vector regression equation, with: y t = x t , � � B = α Φ , � � 1 z t = . x t − 1 5

  6. • Observe x 0 , x 1 , . . . , x n , and condition on x 0 . • Maximum conditional likelihood estimators of B and Σ w are same as for ordinary vector regression. • VAR( p ) is similar, but we must condition on the first p ob- servations. • Full likelihood = conditional likelihood × likelihood derived from marginal distribution of first p observations, and is dif- ficult to use. 6

  7. Example: 1-year, 5-year, and 10-year weekly interest rates • Data from http://research.stlouisfed.org/fred2/series/WGS1YR/ , etc. a = read.csv("WGS1YR.csv"); WGS1YR = ts(a[,2]); a = read.csv("WGS5YR.csv"); WGS5YR = ts(a[,2]); a = read.csv("WGS10YR.csv"); WGS10YR = ts(a[,2]); a = cbind(WGS1YR, WGS5YR, WGS10YR); plot(a); plot(diff(a)); 7

  8. • Use the dse package to fit VAR(1) and VAR(2) models to differences: library(dse); b = TSdata(output = diff(a)); b1 = estVARXls(b, max.lag = 1); cat("VAR(1)\n print method:\n"); print(b1); cat("\n summary method:\n"); print(summary(b1)); b2 = estVARXls(b, max.lag = 2); cat("\nVAR(2)\n print method:\n"); print(b2); cat("\n summary method:\n"); print(summary(b2)); 8

  9. VAR(1) print method: neg. log likelihood= -7188.785 A(L) = 1-1.014698L1 0+0.05794167L1 0-0.04292339L1 0-0.02482398L1 1-0.9224325L1 0-0.05304638L1 0-0.0144053L1 0+0.03872528L1 1-1.024605L1 B(L) = 1 0 0 0 1 0 0 0 1 summary method: neg. log likelihood = -7188.785 sample length = 2448 WGS1YR y.WGS5YR WGS10YR RMSE 0.2005654 0.1713752 0.1563661 ARMA: model estimated by estVARXls inputs : outputs: WGS1YR y.WGS5YR WGS10YR 9

  10. input dimension = 0 output dimension = 3 order A = 1 order B = 0 order C = 9 actual parameters 6 non-zero constants trend not estimated. VAR(2) print method: neg. log likelihood= -7414.944 A(L) = 1-1.329215L1+0.3221239L2 0+0.1030711L1-0.05850615L2 0-0.1539836L1+0.1172694L2 0-0.07336772L1+0.05027099L2 1-1.117284L1+0.1974304L2 0-0.1148573L1+0.05777105L2 0+0.0002002881L1-0.01317073L2 0-0.02287398L1+0.06233586L2 1-1.252808L1+0.2262312L2 B(L) = 1 0 0 0 1 0 0 0 1 summary method: neg. log likelihood = -7414.944 sample length = 2448

  11. WGS1YR y.WGS5YR WGS10YR RMSE 0.1910442 0.1666275 0.1534016 ARMA: model estimated by estVARXls inputs : outputs: WGS1YR y.WGS5YR WGS10YR input dimension = 0 output dimension = 3 order A = 2 order B = 0 order C = 18 actual parameters 6 non-zero constants trend not estimated.

  12. • AIC is smaller (more negative) for VAR(2), but SIC is smaller for VAR(1). • For VAR(1),   0 . 3288773 − 0 . 08581201 0 . 136938 ˆ Φ 1 = 0 . 06575108 0 . 1534516 0 . 08875425     − 0 . 004959931 0 . 04152504 0 . 2406055 • Largest off-diagonal elements are (1,3) and (2,3), suggesting that changes in the 10-year rate are followed, one week later, by changes in the same direction in the 1-year and 5-year rates. 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend