hunting for debris in the milky way with spectroscopic
play

Hunting for debris in the Milky Way with spectroscopic surveys - PowerPoint PPT Presentation

Hunting for debris in the Milky Way with spectroscopic surveys Gregory Ruchti Lund Observatory in collaboration with: Justin Read, Oscar Agertz, Aldo Serenelli, Sofia Feltzing, and the Gaia-ESO Collaboration Background | Accreted stars


  1. Hunting for debris in the Milky Way with spectroscopic surveys Gregory Ruchti Lund Observatory in collaboration with: Justin Read, Oscar Agertz, Aldo Serenelli, Sofia Feltzing, and the Gaia-ESO Collaboration

  2. Background | Accreted stars • Our current cosmology requires the merging and associated accretion of stars and dust to form large-scale structure. • The halo is most sensitive to small substructures ⟹ accreted halo stars • The disc is more sensitive to massive mergers that reach higher metallicity and suffer from dynamical friction and disc plane dragging ⟹ accreted disc stars • Accreted disc stars probe late, massive mergers and the dark matter disc.

  3. Galactic Archaeology | the era of large surveys Present Future S. BRUNIER / ESO Large-scale spectroscopic surveys deliver chemical composition and radial velocities for millions of stars in the Milky Way.

  4. Hunting for accreted stars | A chemodynamic template Ruchti et al. 2014; see also, e.g., Tolstoy et al. (2009)

  5. Hunting for accreted stars | A chemodynamic template T y p e - I I D w a r f T y p e - I a MW-lowSFE Ruchti et al. 2014

  6. Hunting for accreted stars | A chemodynamic template LMC-20 o o LMC-60 o L M C - 4 0 in-situ stars 1 merger accreted stars 2 mergers 3 mergers Accreted stars inhabit low J z /J c and low [Mg/Fe], distinct from Galactic disc stars. Ruchti et al. 2014, 2015; see also Read et al. 2008

  7. Hunting for accreted stars | The Gaia-ESO Survey • Five year survey using ESO VLT to obtain ~100,000 spectra in the Milky Way (see Gilmore et al. 2012). • Medium resolution (R~18,000) iDR3 GIRAFFE data, with S/N > 15 • Only Milky Way field stars (e.g. no clusters, etc.). • ~4800 stars with distances; proper motions + radial velocities. • Calculate J z /J c for each star assuming a simple Galactic model. Ruchti et al. 2015

  8. Hunting for accreted stars | The Gaia-ESO Survey 1.0 0.8 0.6 0.4 [Mg/Fe] 0.2 0.0 − 0.2 − 0.4 − 3 − 2 − 1 0 1 [Fe/H] Ruchti et al. 2015

  9. Ruchti et al. 2015

  10. 1 2 3 4 5 [Mg/Fe] !"#$ !/#$ !7#$ !'#$ !4#$ %&'( %"&( %//( %/7( %4( a 6 0.4 !")$ !/)$ !7)$ !')$ !4)$ !*)$ %'*( %"2( %"'( %4'( %'*( %"2( b 7 0.3 !"+$ !/+$ !7+$ !'+$ !4+$ !*+$ !-+$ %"*( %6( %*( %"4( %76( %"6( %4( c 8 9 0.2 !",$ !/,$ !7,$ !',$ !4,$ !*,$ !-,$ !&,$ !6,$ %-( %/( %7( %7( %"2( %"/( %"2( %'( %"( d 0.1 !".$ !/.$ !7.$ !'.$ !4.$ !*.$ !-.$ !&.$ !6.$ %/( %'( %/( %/( %"( %4( %"/( %"'( %7( e 0.0 !"5$ !/5$ !75$ !'5$ !45$ !*5$ !-5$ !&5$ !65$ %'( %/( %/( %7( %2( %/( %4( %4( %&( f ! 234 234 ! 234 234 ! 234 234 ! 234 234 ! 234 234 ! 234 234 ! 234 234 ! 234 234 ! 234 234 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 + [Fe/H] -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 Ruchti et al. 2015

  11. The Gaia-ESO Survey | Boosting Statistics & “Ages” 2.0 a) Bin A: − 0.8 < [Fe/H] < − 0.2 -0.8 < [Fe/H] < -0.2 1.5 High − α : 211 Low − α : 38 Density 1.0 0.5 0.0 -1.3 < [Fe/H] < -0.8 b) Bin B: − 1.3 < [Fe/H] < − 0.8 1.5 High − α : 88 Low − α : 34 Density 1.0 0.5 0.0 c) Bin C: [Fe/H] < − 1.3 [Fe/H] < -1.3 1.5 High − α : 106 Low − α : 21 Density 1.0 0.5 0.0 − 1.0 − 0.5 0.0 0.5 1.0 J z J c Age (Gyr) J z /J c Ruchti et al. 2015

  12. The Gaia-ESO Survey | Only low-mass mergers • ) log ( Z * / Z O 0.0 -0.5 ⟨ [Fe/H] ⟩ ~ -1.3 MW dSph MW dSph MW dSph M31 dSph M31 dSph SDSS spectroscopic LG dIrr ⇒ M ✷ ~ 10 7.4 M ⊙ stellar metallicities -1.0 (Gallazzi et al. 2005) 9 10 11 12 〈 [Fe/H] 〉 -1.5 Kirby et al. 2013 -2.0 ⟨ [Fe/H] ⟩ ~ -1.0 ⇒ M ✷ ~ 10 8.2 M ⊙ -2.5 DEIMOS spectroscopic stellar metallicities 3 4 5 6 7 8 log ( M * / M O • ) Both < M LMC ~ 10 8.9 M ⊙ ⇒ low-mass mergers Ruchti et al. 2015

  13. The Milky Way’s Last Major Merger | A New Template 8 40 Merger 6 4 20 • Cosmological simulations from Agertz et log 10 M � kpc � 3 2 al. (2015), with resolution of ~70pc. Main y/ kpc 0 0 � 2 • Separate the main galaxy and the � 20 � 4 merging satellite galaxy at z~2. � 6 z~2 � 40 � 8 • Stars with azimuthal velocities (V ᵩ ) less � 40 � 20 0 20 40 x/ kpc than zero (on retrograde orbits) originate 2 . 0 in both the main galaxy as well as the v φ < 0 | Main | 5649 v φ < 0 | Merger | 1504 last major merger. All | 111660 1 . 5 • Stars from the last major merger: • [Fe/H] < -0.8 1 . 0 f • V ᵩ < 0 km/s • Possible traces in the Gaia-ESO Survey 0 . 5 iDR4 data… 0 . 0 − 3 . 0 − 2 . 5 − 2 . 0 − 1 . 5 − 1 . 0 − 0 . 5 0 . 0 0 . 5 [Fe / H] Ruchti et al. 2016, in prep.; see also Agertz et al. 2015

  14. Hunting for debris in the Galaxy | Conclusions • We built a chemo-dynamical template to identify accreted stars, especially an accreted disc component — detritus from late, massive mergers • Works for all large spectroscopic surveys of the MW. • Follow-up most interesting candidates to chemically characterize progenitors. • Current evidence suggests the Milky Way had a quiescent merger history and a correspondingly light dark matter disc. • Using state-of-the-art simulations to hunt for signatures of the Milky Way’s last major merger. • Uncertainty in proper motions & distance limit our ability => Gaia ! • Stay tuned…

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend