james bullock
play

James Bullock @jbprime Universe of Galaxies (~ 10 -8 of observable - PowerPoint PPT Presentation

Cosmology & The Milky Way James Bullock @jbprime Universe of Galaxies (~ 10 -8 of observable part) Milky Way & Local Group Each dot is a galaxy ~100 million light years Why does the Universe look this way? Milky Way & Local Group


  1. Cosmology & The Milky Way James Bullock @jbprime

  2. Universe of Galaxies (~ 10 -8 of observable part) Milky Way & Local Group Each dot is a galaxy ~100 million light years

  3. Why does the Universe look this way? Milky Way & Local Group Each dot is a galaxy ~100 million light years

  4. Why do galaxies have these shapes? Milky Way & Local Group Each dot is a galaxy ~100 million light years

  5. Our Laboratory: The Local Group ~5 million light years

  6. Milky Way Andromeda Galaxy Wally Pacholka/Astropics.com Mauna Kea, Hawaii.

  7. Milky Way Andromeda Galaxy Wally Pacholka/Astropics.com Mauna Kea, Hawaii.

  8. Andromeda (M31)

  9. Vera Rubin 1969 Rotation speed Distance from center

  10. Dark Matter Rotation speed Distance from center

  11. Composition of the Cosmos Normal Matter 5% Cold Dark Matter 25% Dark Energy 70%

  12. Cosmic Microwave Background 1990-2000’s WMAP (2003) - Temperature map of universe 300,000 yrs after Big Bang - Universe smooth to 1/100,000 - Need extra mass to get clumpy universe today.

  13. 200 million lt yrs Dark Matter allows galaxies to grow: Look-back time (Gyr) Allgood et al. 06

  14. Map of real universe Simulated universe 2 billion light years 2 billion light years Each point = 1 galaxy Springel et al.

  15. Map of real universe Simulated universe 2 billion light years 2 billion light years Broad brush: we seem to understand things What about the details?

  16. The Milky Way in 2micron light

  17. The Milky Way in 2micron light Satellite galaxies of the Milky Way

  18. The Milky Way in 2micron light

  19. The Milky Way in 2micron light Sagittarius dwarf

  20. The Milky Way in Star Counts Sloan Digital Sky Ssurvey III (Koposov et al.)

  21. Purcell, JSB, Tollerud, Rocha, Charkrabarti, Nature , 2011

  22. Purcell, JSB, Tollerud, Rocha, Charkrabarti, Nature , Sept. 2011

  23. Without Sag. With Sag. Sun Sagittarius Dwarf ⇒ Spiralilty, Rings, Bar Evolution in the Galaxy

  24. Intermediate-scale spiral structure, similar to MW Sgr Sgr ? ⊙ ? ?

  25. More streams around the Milky Way Size of full moon 100 degrees of sky Belokurov et al. 2006

  26. Predicted accretion history of typical galaxy JSB & Johnston 2005

  27. Halo Streams & Substructure Law & Majewski 06 Bullock & Johnston 05 Data (+ models engineered to match) Random LCDM realization

  28. Andromeda Galaxy (M31)

  29. Andromeda galaxy also surrounded by streams M31 McConnachie et al. 2009 M33 Also: Guhathakurta et SPLASH

  30. Towards more detailed tests Observed Universe Simulation

  31. 250 million lt yrs Miguel Rocha

  32. 250 million lt yrs Miguel Rocha

  33. 250 million lt yrs 1million lt yrs Miguel Rocha

  34. Shea Garrison-Kimmel 100,000 light years

  35. Does the Milky Way look like this? Shea Garrison-Kimmel 100,000 light years

  36. dark matter clumps dwarf galaxies (predicted) (observed) Theory: N>>1000 Observation: N bright ~10

  37. “Missing Satellites Problem” Theory: N>>1000 Observation: N bright ~10 Klypin et al. 1999

  38. Maybe... only the biggest clumps have stars? Theory: N>>1000 Observation: N bright ~10 Klypin et al. 1999

  39. Maybe... only the biggest clumps have stars? Theory: N>>1000 Theory: N>>1000 Observation: N bright ~10 Bullock et al. 2000

  40. Maybe... only the biggest clumps have stars? Theory: N>>1000 Theory: N>>1000 Observation: N bright ~10 Bullock et al. 2000

  41. 1. Predict dark 2. Measure dark matter mass in matter mass in each clump each dwarf galaxy 3. Compare

  42. Typical dwarf galaxy: about 5 million stars 3000 lt yrs Use the mighty Keck telescope to measure speeds of the stars -- how much mass?

  43. Packed with Dark Matter Motions of stars => ~500 times more dark matter than visible!

  44. Theory Data

  45. Theory Predicted clumps are too dense to host any satellite Data The theory is broken?

  46. Maybe Cold Dark Matter is not so simple?

  47. standard dark matter density profile (predicted) Radius DM Density (10 -22 g/cm 3 ) (~1 Hydrogen atom/cm 3 ) 1,500 15,000 Radius (light years)

  48. standard dark matter density profile (predicted) Radius DM Density data (10 -22 g/cm 3 ) data from galaxy rotation curves 1,500 15,000 Radius (light years)

  49. Theory Rotation speed (km/s) 15 30 45 60 Radius (1000 light years)

  50. Radius standard dark matter theory Density (10 -22 g/cm 3 ) data data 2,000 20,000 Radius (light years)

  51. Radius New dark matter physics? Galaxy formation? Density (10 -22 g/cm 3 ) data data 2,000 20,000 Radius (light years) Flores & Primack 94

  52. Composition of the Cosmos Normal Matter 5% Cold Dark Matter 25% Dark Energy 70%

  53. What do we really know? Normal Matter 5% Cold Dark Matter 25% Dark Energy 70%

  54. Normal Matter 5%

  55. Normal Matter 5%

  56. Dark Matter 25%

  57. Dark Matter 25%

  58. Dark Matter Matches all large-scale data: 25% - Single particle. - Only gravity. - No other interaction. - Mass > 10% proton mass

  59. Dark Matter Matches all large-scale data: 25% - Single (lightest) particle. - Only gravity. - No other interaction (weak). - Mass > 10% proton mass (~100 m p ). Reasonably well motivated

  60. Dark Matter Matches all large-scale data: 25% - Single particle. - Only gravity. - No other interaction. - Mass > 10% proton mass Could it be more complicated?

  61. Toy model: 25% Self-interacting Dark Matter Elastic scattering with: ¡σ/m ¡~ ¡1 ¡cm 2 ¡/g ¡ ¡ ¡ ~ ¡ (neutron-­‑neutron ¡sca-ering) ⇣ σ ⌘ Scattering rate: Γ = ρ dm v rms m

  62. Simula/ng ¡Self-­‑interac/ng ¡Dark ¡Ma9er 250 million lt yrs Standard ¡CDM Self-­‑Interac/ng ¡CDM ¡σ/m ¡= ¡1 ¡cm 2 ¡/g

  63. Simula/ng ¡Self-­‑interac/ng ¡Dark ¡Ma9er 250 million lt yrs Iden/cal ¡large-­‑scale ¡structure Standard ¡CDM Self-­‑Interac/ng ¡CDM ¡σ/m ¡= ¡1 ¡cm 2 ¡/g

  64. Standard ¡CDM Self-­‑Interac/ng ¡CDM ¡σ/m ¡= ¡1 ¡cm 2 ¡/g

  65. Lower ¡central ¡densi/es, ¡ in ¡line ¡with ¡observa/ons. Standard ¡CDM Self-­‑Interac/ng ¡CDM ¡σ/m ¡= ¡1 ¡cm 2 ¡/g

  66. Standard ¡CDM Self-­‑Interac/ng ¡CDM

  67. Radius Standard Dark Matter Density (10 -22 g/cm 3 ) data Self-interacting DM data 2,000 20,000 Radius (light years) Rocha et al. 12; Peter et al. 12

  68. Normal Matter 5% This piece of the pie is very interesting...

  69. Normal Matter 5% Dark Matter 25% Maybe this one is too...

  70. Thanks. James Bullock @jbprime

  71. Not just star streams: new galaxies! 100 degrees of sky Belokurov et al. 2006

  72. Probably ~100’s more faint dwarfs to be discovered Stadel et al . 2009

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend