quantum error correcting codes discrete math meets physics
play

Quantum Error-Correcting Codes: Discrete Math meets Physics Markus - PowerPoint PPT Presentation

Quantum Error-Correcting Codes LAWCI Latin American Week on Coding and Information UniCamp Campinas, Brazil 2018, July 2027 Quantum Error-Correcting Codes: Discrete Math meets Physics Markus Grassl Markus.Grassl@mpl.mpg.de


  1. Quantum Error-Correcting Codes LAWCI Latin American Week on Coding and Information UniCamp – Campinas, Brazil 2018, July 20–27 Quantum Error-Correcting Codes: Discrete Math meets Physics Markus Grassl Markus.Grassl@mpl.mpg.de www.codetables.de Markus Grassl – 1– 23.07.2018

  2. Quantum Error-Correcting Codes LAWCI Classical & Quantum Information Classical information often represented by a finite alphabet, e. g., bits 0 and 1 Quantum-bit (qubit) basis states: � � � � 1 0 ∈ C 2 , ∈ C 2 “0” ˆ = | 0 � = “1” ˆ = | 1 � = 0 1 general pure state: where α, β ∈ C , | α | 2 + | β | 2 = 1 | ψ � = α | 0 � + β | 1 � measurement (read-out): result “0” with probability | α | 2 result “1” with probability | β | 2 Markus Grassl – 2– 23.07.2018

  3. Quantum Error-Correcting Codes LAWCI Classical & Quantum Information Bit strings larger set of messages represented by bit strings of length n , i. e., x ∈ { 0 , 1 } n Quantum register basis states: | b 1 � ⊗ . . . ⊗ | b n � =: | b 1 . . . b n � = | b � where b i ∈ { 0 , 1 } general pure state: � � x ∈{ 0 , 1 } n | c x | 2 = 1 | ψ � = c x | x � where x ∈{ 0 , 1 } n → normalised vector in ( C 2 ) ⊗ n ∼ = C 2 n − Markus Grassl – 3– 23.07.2018

  4. Quantum Error-Correcting Codes LAWCI Classical & Quantum Information Larger alphabet messages represented as vectors over a finite field, i. e., x ∈ F n q Qudit register basis states: | b 1 � ⊗ . . . ⊗ | b n � =: | b 1 . . . b n � = | b � where b i ∈ F q general pure state: � � | c x | 2 = 1 | ψ � = c x | x � where x ∈ F n x ∈ F n q q = C q n ∼ → normalised vector in ( C q ) ⊗ n ∼ = C [ F n − q ] (isomorphic as vector spaces) Markus Grassl – 4– 23.07.2018

  5. Quantum Error-Correcting Codes LAWCI Bra-Ket Notation • column vectors denoted by | x � “ket x ” • elements of the dual vector space (row vectors) denoted by � y | “bra y ” q � | x � = α i | i � i =1 q � � x | = α i � i | i =1 • inner product � x | y � “bra-c-ket” • linear operators M = � i,j m i,j | i �� j | in particular: rank-one orthogonal projections P | ψ � = | ψ �� ψ | Markus Grassl – 5– 23.07.2018

  6. Quantum Error-Correcting Codes LAWCI Quantum Operations Continuous time: Schr¨ odinger equation i � ∂ ∂t | ψ ( t ) � = H ( t ) | ψ ( t ) � time-independent Hamiltonian H : | ψ ( t ) � = e iH ( t − t 0 ) | ψ ( t 0 ) � Discrete time: Unitary operations | ψ ( t 1 ) � = U ( t 1 , t 0 ) | ψ ( t 0 ) � • composite systems, independent operation: U = U 1 ⊗ U 2 • single-qudit operations U (1) = U ⊗ I ⊗ I ⊗ . . . U (2) = I ⊗ U ⊗ I ⊗ . . . Markus Grassl – 6– 23.07.2018

  7. Quantum Error-Correcting Codes LAWCI Quantum Operations CNOT on basis states: | x �| y � �→ | x �| x + y � Toffoli gate on basis states: | x �| y �| z � �→ | x �| y �| z + xy � • Every reversible classical Boolean function can be decomposed into Toffoli gates (plus constants). • Every unitary operation U ∈ U (2 n ) can be decomposed into single qubit gates and CNOT. • • U ✐ ✐ • V T ✐ • W Markus Grassl – 7– 23.07.2018

  8. Quantum Error-Correcting Codes LAWCI Quantum Measurement Physics textbook: • observable A given by self-adjoint operator A = A ∗ = A † • real eigenvalues λ i correspond to physical quantity • expectation value � A � = � ψ | A | ψ � from many repetitions with identically prepared quantum states | ψ � Quantum Information Processing: • spectral decomposition A = � i λ i P i , with P i orthogonal projection onto eigenspace i • single-shot experiment, one random outcome i (“click”) • probability p i = � ψ | P i | ψ � 1 • post-measurement state | ψ ′ � = √ p i P i | ψ � Markus Grassl – 8– 23.07.2018

  9. Quantum Error-Correcting Codes LAWCI Quantum Measurement: Examples Single Qubit: • observable σ z = diag(1 , − 1) = (+1) | 0 �� 0 | + ( − 1) | 1 �� 1 | • qubit state | ψ � = α | 0 � + β | 1 � where α, β ∈ C ⇒ outcome “0” or “1” with probability | α | 2 or | β | 2 , resp. = Two Qubits: • observable σ (1) = diag(1 , − 1) ⊗ I = | 0 �� 0 | ⊗ I − | 1 �� 1 | ⊗ I z • two-qubit state | ψ � = α | 00 � + β | 01 � + γ | 10 � + δ | 11 � ⇒ outcome “0” with probability | α | 2 + | β | 2 = � � 1 post-measurement state � α | 00 � + β | 01 � | α | 2 + | β | 2 Markus Grassl – 9– 23.07.2018

  10. Quantum Error-Correcting Codes LAWCI Quantum Entanglement 1 1 • two-qubit state | Ψ � = 2 | 00 � + 2 | 11 � √ √ • measuring σ (1) z , i. e., the first qubit = ⇒ outcome “0” or “1” with probability 1 / 2 • post-measurement state first outcome “0”: | 00 � first outcome “1”: | 11 � • measuring σ (2) z , i. e., the second qubit = ⇒ second outcome is identical to the first outome Spooky action at a distance. Markus Grassl – 10– 23.07.2018

  11. Quantum Error-Correcting Codes LAWCI Quantum Error Correction General scheme s action environment inter- no access s system | φ � entanglement ⇒ decoherence Markus Grassl – 11– 23.07.2018

  12. Quantum Error-Correcting Codes LAWCI Quantum Error Correction General scheme s interaction environment no access s s encoding system | φ � s s encoding ancilla | 0 � three-party entanglement Markus Grassl – 12– 23.07.2018

  13. Quantum Error-Correcting Codes LAWCI Quantum Error Correction General scheme s s interaction environment no access s s s encoding system | φ � correction code entanglement s s s encoding ancilla | 0 � error s syndrome ancilla | 0 � environment/ancilla Markus Grassl – 13– 23.07.2018

  14. Quantum Error-Correcting Codes LAWCI Quantum Error Correction General scheme s s s interaction environment no access s s s encoding decoding system | φ � | φ � correction s s s encoding ancilla | 0 � | 0 � error s s syndrome ancilla | 0 � Markus Grassl – 14– 23.07.2018

  15. Quantum Error-Correcting Codes LAWCI Quantum Error Correction General scheme s s s interaction environment no access s s s encoding decoding system | φ � | φ � correction s s s encoding ancilla | 0 � | 0 � error s s syndrome ancilla | 0 � Basic requirement some knowledge about the interaction between system and environment Common assumptions • no initial entanglement between system and environment • local/uncorrelated errors, i. e., only a few qubits are disturbed or interaction with symmetry ( = ⇒ decoherence free subspaces) Markus Grassl – 15– 23.07.2018

  16. Quantum Error-Correcting Codes LAWCI Interaction System/Environment “Closed” System � environment | ε � action � � inter- = U env/sys | ε �| φ � system | φ � “Channel” � E i ρ in E † Q : ρ in := | φ �� φ | �− → ρ out := Q ( | φ �� φ | ) := i i with Kraus operators (error operators) E i Local/low correlated errors • product channel Q ⊗ n where Q is “close” to identity • Q can be expressed (approximated) with error operators ˜ E i such that each ˜ E i acts on few subsystems, e. g. quantum gates Markus Grassl – 16– 23.07.2018

  17. Quantum Error-Correcting Codes LAWCI Quantum Channel: Product Channel Assumption: only local interactions , i. e., each subsystem interacts with a separate environment.   ✲ ✲    | ˜  | ψ 1 � ψ 1 �  subsystem 1     ✸ ✑ ✑ ✸  ✑ ✑ ◗ ◗ s ◗ ◗ s       ✲ ✲   | ǫ 1 � | ˜ ǫ 1 �   environment 1               ✲ ✲   | ˜  | ψ 2 �  subsystem 2 ψ 2 �     ✑ ✸ ✸ ✑ ✑ ✑  ◗ ◗  ◗ s ◗ s   � ✲ ✲ | ˜ | ǫ 2 � | ˜ ǫ 2 � | ψ � ⊗ | ǫ � environment 2 ψ � ⊗ | ˜ ǫ �           .   .   .           ✲ ✲   | ˜ | ψ n �   ψ n � subsystem n     ✑ ✸ ✸ ✑ ✑ ✑  ◗ ◗  s ◗ ◗ s     ✲ ✲     | ǫ n � | ˜ ǫ n � environment n     Markus Grassl – 17– 23.07.2018

  18. Quantum Error-Correcting Codes LAWCI Computer Science Approach: Discretize QECC Characterization [Knill & Laflamme, PRA 55 , 900–911 (1997)] A subspace C of H with orthonormal basis {| c 1 � , . . . , | c K �} is an error-correcting code for the error operators E = { E 1 , E 2 , . . . } , if there exists constants α k,l ∈ C such that for all | c i � , | c j � and for all E k , E l ∈ E : � c i | E † k E l | c j � = δ i,j α k,l . (1) It is sufficient that (1) holds for a vector space basis of E . Markus Grassl – 18– 23.07.2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend