b meson key measurements at the lhc
play

B meson key measurements at the LHC 85 LHCb Key Measurements B s - PDF document

B meson key measurements at the LHC 85 LHCb Key Measurements B s mixing phase s b s penguins Very rare FCNC proc. + B B s s B d, s 0 0 B K A CP (B s J/ ) B d,s B d K*


  1. B meson key measurements at the LHC 85 LHCb – Key Measurements B s mixing phase φ s b → s γ penguins Very rare FCNC proc. μ μ + μ B B s s B − d, s μ 0 ∗ 0 B K A CP (B s → J/ ψ φ ) B d,s → μμ B d → K* γ γ d B d → K* μμ → In addition: Measurement of the CKM angle γ in tree level decays. 86 Probing the High-energy Frontier at the LHC: Probing New Physic with B meson decays 1

  2. Reference Measurements To proof the understanding of the detector a set of reference measurements is necessary: • Lifetime determination in B → J/ ψ ( μμ )X decays. • Measurement of the B s mixing frequency • Determination of sin(2 β ) in the “golden decay” B d → J/ ψ K s 87 Lifetime Measurement B u, B d → J/ ψ ( μμ ) X To reduce backgrounds from prompt g p p J/ ψ production exploit lifetime of “B” by applying impact parameter cut: μ J/ ψ B μ PV SV impact parameter PV = Primary Vertex SV = Secondary Vertex → Lifetime dependent acceptance! 88 Probing the High-energy Frontier at the LHC: Probing New Physic with B meson decays 2

  3. sin(2 β ) in B 0 → J/ ψ K s for 2 fb -1 , 1 yr Time dependent CP asymmetry: = A CP ( t ) 0 → ψ − 0 → ψ N ( B J / K )( t ) N ( B J / K )( t ) s s 0 → ψ + 0 → ψ N ( B J / K )( t ) N ( B J / K )( t ) s s = φ + φ Δ sin ( ) sin( mt ) d J/ ψ K = Δ sin 2 β sin( mt ) e + e - B-factories: LHCb expectation for 2 fb -1 : ~ 200k events, B/S~0.6 sin2 β = 0.670 ± 0.023 ( ± 0.020 stat-only ) Δ (sin2 β ) stat =0.20 … 0.23 89 LHCb – Key Measurements � B s – mixing � B s mixing frequency (reference) B s mixing frequency (reference) � φ s and ΔΓ s with B 0 s → J/ ψφ � Measurement of γ � Radiative (penguin) decays • Exclusive b → s μ μ • Exclusive b → s μ + μ - 0 → μ + μ - • B s 90 Probing the High-energy Frontier at the LHC: Probing New Physic with B meson decays 3

  4. B s – mixing: amplitude and phase Access to the 2 nd A h 2 d Unitarity Triangle 91 2 nd Unitarity triangle ⎛ V V V ⎞ ud us ub ⎜ ⎟ = V V V V ⎜ ⎟ cd cs cb ⎜ ⎜ ⎟ ⎟ V V V ⎝ ⎠ td ts tb ∗ ∗ ∗ + + = V V V V V V 0 „bd“ λ 3 O ( ) ud ub cd cb td tb λ 3 ρ + η − λ 3 + λ 3 − ρ − η = A ( i ) A A ( 1 i ) 0 ∗ ∗ ∗ + + = V V V V V V 0 „tu“ ud td us ts ub tb λ 3 − ρ − η − λ 3 + λ 3 ρ + η = A ( 1 i ) A A ( i ) 0 Same triangle ! 92 Probing the High-energy Frontier at the LHC: Probing New Physic with B meson decays 4

  5. Two different triangles in O( λ 5 ) „tu“ „bd“ ∗ ∗ ∗ ∗ ∗ ∗ + + = + + = V V V V V V 0 V V V V V V 0 ud ub cd cb td tb ud td us ts ub tb λ 3 ρ ρ + η η − λ 3 + λ 3 − ρ ρ − η η = A ( ( i ) ) A A ( ( 1 i ) ) 0 λ λ 3 − ρ ρ − η η − λ λ 3 + + λ λ 3 ρ ρ + + η η = A A ( ( 1 1 i i ) ) A A A A ( ( i i ) ) 0 0 1 1 1 1 − λ 5 ρ + η + λ 5 ρ + η A ( i ) A ( i ) − λ 5 − ρ + η + λ 5 − ρ + η A ( ( i )) A ( ( i )) 2 2 2 2 + λ 7 O ( ) + λ 7 O ( ) * V V Im ud ub Im * V V cd cb η η * V V λ + 2 td tb α α − ρλ ρ 2 α α 1 * V V cd V V 2 2 cb ηλ 2 β′ γ β γ′ Δγ Re Re ρ 0 ρ 0 1 1 ∗ V V λ 2 λ 2 us ts β s = γ − γ ′ = β ′ − β ≈ η = η ⋅ − 0 . ( 1 ) ρ = ρ ⋅ − ( 1 ) 02 λ 3 A 2 2 Very small in SM 93 B s Mixing Phenomenology ∗ V V ts tb ⎛ ⎞ i i b s t ⎜ − Γ * − Γ * ⎟ m m ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ d B B B 0 0 0 0 11 11 12 12 0 B B ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ s = s = 2 2 s i H s s ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ i i dt dt ⎜ ⎜ ⎟ ⎟ B B 0 B B 0 B B 0 ⎝ ⎝ ⎠ ⎠ ⎝ ⎝ ⎠ ⎠ ⎝ ⎝ ⎠ ⎠ b b s s t t − Γ Γ − Γ Γ ⎜ ⎜ m m ⎟ ⎟ s s s ⎝ ⎠ 12 12 22 22 2 2 ∗ V V tb ts Δ − ΔΓ ⎛ i m i / 2 ⎞ Δ = − m m m + φ − Γ − i ⎜ m e ⎟ s H L 2 2 ⎜ ⎟ = ΔΓ = Γ − Γ H Δ − ΔΓ m i / 2 i H L ⎜ ⎟ − φ − i − Γ e m ⎜ ⎟ s q q ⎝ ⎠ 2 2 − i φ = = 1 or e s p p (if CPV in mixing is ignored) B d B s Δ m=m H -m L 0.5 ps -1 17.8 ps -1 In SM ΔΓ = Γ H - Γ L O(0.01)· Γ d O(0.1)· Γ s small: ∗ ∗ ) = β φ s,d = β arg( V tb V arg( V tb V ) 2 2 td ts s 0.04 94 Probing the High-energy Frontier at the LHC: Probing New Physic with B meson decays 5

  6. B s Mixing Measurement Signal B K - (flavor specific decay) K + - π + B s → D s π - D s - + π - B s → D s B s π + PV B flavor tagging B − N ( B ) ( t ) N ( B ) ( t ) ( ) = Δ unmixed mixed A ( t ) ~ sin m t mix + s N ( B ) ( t ) N ( B ) ( t ) unmixed mixed 95 Necessary Tool: B Flavor Tagging π + Signal B (same side tagging) π − B 0 • Fragmentation kaon near B s B 0 Tagging B (opposite tagging) D Dilution • lepton l t form K - • kaon oscillation + l if B 0 • Vertex charge b B s Mistag rate s b Tag ε Tag (%) w (%) ε eff (%) s Κ + u Muon Muon 11 11 35 35 1.0 1.0 u Electron 5 36 0.4 Kaon 17 31 2.4 Vertex Charge 24 40 1.0 Dilution D=(1-2 w ) Frag. kaon (B s ) 18 33 2.1 Effective Tagging Power Combined B 0 (decay dependent: ~4 ε eff = ε Tag D 2 Combined B s trigger + select.) ~6 96 Probing the High-energy Frontier at the LHC: Probing New Physic with B meson decays 6

  7. Effect of mistag rate on mixing − N ( B )( t ) N ( B )( t ) = ) = B ( t B 0 = A ( t ) + N ( B )( t ) N ( B )( t ) ω ω Observed asymmetry w/ wrong tag fraction Observed asymmetry w/ wrong tag fraction ′ ′ − N ( B )( t ) N ( B )( t ) = A meas ( t ) ′ ′ + N ( B )( t ) N ( B )( t ) − ω + ω − − ω − ω N ( B )( t )( 1 ) N ( B )( t ) N ( B )( t )( 1 ) N ( B )( t ) = − ω + ω + − ω + ω N ( B )( t )( 1 ) N ( B )( t ) N ( B )( t )( 1 ) N ( B )( t ) − N N ( ( B B )( )( t t ) ) N N ( ( B B )( )( t t ) ) = − ω = − ω = ( 1 2 ) ( 1 2 ) A ( t ) D A ( t ) − N ( B )( t ) N ( B )( t ) ′ ′ N ( B ), N ( B ) Observed number of events of given flavor = − ω D ( 1 2 ) ω =50% → D=0 Tagging “dilution”: no measurement possible Dilution ω × (1-2 ω ) Probing the High-energy Frontier at the LHC: Probing New Physic with B meson decays 7

  8. Sensitivity and Tagging Power = N qN , B − N ( B ) N ( B ) = − = = N ( 1 q ) N pN A Statistical error of asymmetry B + N ( B ) N ( B ) N = B q N = + + N N N N ( ( B B ) ) N N ( ( B B ) ) fixed fixed T t l Total event number t b σ 2 = − ( qN ) N ( 1 q ) q Statistical error calculated according binominal distribution (A or notA): 1 2 ) 1 / 2 Δ = − A ( 1 A N 1 Δ = − 2 ) 1 / 2 A ( 1 ( A ) meas meas ε N → → ′ = = ε ε N N N N N N Tagging efficiency: Tagging efficiency: A meas = D A 1 Wrong tag fraction: Δ A stat ~ ε 2 D N 1 We are interested in A and Δ = Δ A A meas therefore also in the error of A D = effective tagging power B s Mixing B s → D s π Perfect reconstruction Perfect reconstruction Perfect reconstruction Perfect reconstruction Perfect reconstruction B s oscillates about 26 times until it decays: 1000 1000 1000 + flavour tagging + flavour tagging 1000 1000 + flavour tagging + flavour tagging need excellent proper time resolution to + proper time resolution + proper time resolution + proper time resolution resolve the mixing (LHCb ~40 fs) + background 800 800 800 + background 800 800 800 + acceptance + acceptance Observation of B s mixing is basis for time dependent CP asymmetry measurements. Events Events Events 600 600 Events 600 Events 600 2 fb -1 (1 yr) of data 600 Δ m s =20 ps -1 400 400 400 400 400 200 200 200 200 200 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 0 1 2 3 4 5 0 1 2 3 4 5 Proper time (ps) Proper time (ps) Proper time (ps) Proper time (ps) Proper time (ps) CDF: LHCb expects 80k B s → D s π events in 1 yr ± ± . ( stat. ) . ( syst. ) ps -1 0 10 0 07 100 Probing the High-energy Frontier at the LHC: Probing New Physic with B meson decays 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend