atpdraw graphical preprocessor to atp
play

ATPDraw Graphical Preprocessor to ATP Hans Kristian Hidalen NTNU, - PowerPoint PPT Presentation

1 ATPDraw Graphical Preprocessor to ATP Hans Kristian Hidalen NTNU, Norway hans.hoidalen@elkraft.ntnu.no 2 Contents Introduction Overview of ATPDraw functionality Examples Latest news in version 5.0-5.4 3 Introduction


  1. 1 ATPDraw Graphical Preprocessor to ATP Hans Kristian Høidalen NTNU, Norway hans.hoidalen@elkraft.ntnu.no

  2. 2 Contents • Introduction • Overview of ATPDraw functionality • Examples • Latest news in version 5.0-5.4

  3. 3 Introduction • ATPDraw is a graphical, mouse-driven, dynamic preprocessor to ATP on the Windows platform • Handles node names and creates the ATP input file based on ”what you see is what you get” • Freeware • Supports – All types of editing operations – ~100 standard components – ~60 TACS components – MODELS – $INCLUDE and User Specified Components – Groups

  4. 4 Introduction- ATPDraw history • Simple DOS version – Leuven EMTP Centre, fall meeting 1991, 1992 • Extended DOS versions, 1994-95 • Windows version 1.0, July 1997 – Line/Cable modelling program ATP_LCC BPA Sponsored – User Manual • Windows version 2.0, Sept. 1999 – MODELS, more components (UM, SatTrafo ++) – Integrated line/cable support (Line Constants + Cable Parameters)

  5. 5 Introduction- ATPDraw history • Windows version 3, Dec. 2001 – Grouping/Compress – Data Variables, $Parameter + PCVP – LCC Verify + Cable Constants – BCTRAN – User Manual @ version 3.5 • Windows version 4, July 2004 – Line Check – Hybrid Transformer model – Zigzag Saturable transformer • Windows version 5, Oct. 2006 – Vector graphics, multi-phase nodes, interactive Models integration, files in memory

  6. 6 ATPDraw functionality Main menu Tool bar Circuit Header, map circuit file name Component Circuit selection menu windows Circuit under construction

  7. 7 ATPDraw Component dialog Node names Editable Red=User Spec. data values Used for sorting Label on Windows screen clipboard Comment in support ATP file Branch Component output not to ATP Edit local High definitions precision Icon/help/ Local help pos/name/ F1=Global help units

  8. 8 I ATPDraw capability V I I I Los Banos 30050 3 LCC 1 LB - Mid LCC 3 LCC V LCC 1 V I I Gates 30055 V I I V V V I V I I I I I t I I • 30.000 nodes V I I I I I I LCC LCC LCC 3 • 10.000 components LCC LCC LCC Diab lo Canyon 2 LCC LCC 0 30057 V LCC LCC UI I LCC LCC • 10.000 connections UI I I V MIDWAY I UI I I UI 30060 V • 1.000 text strings 2 1 3 I I I LCC LCC • Up to 64 data and 32 nodes per component LCC LCC LCC I 3 LUGO LCC 24086 1 • Up to 26 phases per node (A..Z extension) I 2 LCC 1 I LCC 2 V V 1 I • 21 phases in lines&cables module 2 I LCC I VINCENT LCC 24156 LCC LCC • Unlimited grouping hierarchy 2 3 V MIRA LOMA • 100 UnDo/ReDo steps 24092 LCC 24138 SERRANO LCC LCC VALLEY 24151 V LCC V

  9. 9 ATPDraw Edit options • Multiple documents – several circuit windows – large circuit windows (map+scroll) – grid snapping • Circuit editing – Copy/Paste, Export/Import, Rotate/Flip, Undo/Redo (100), Zoom, Compress/Extract – Windows Clipboard: Circuit drawings, icons, text, circuit data • Text editor – Viewing and editing of ATP, LIS, model files, and help files • Help file system – Help on ATPDraw functionality, all components, and MODELS

  10. 10 All standard components Prob es & 3-phase UserSpec Branch L. lump L. distr Switches NonLin Machines Trafos Models TACS Devices Fortran V R(i) n 1 : LIB SM T Gdu f F P S dt K + 50 59 v - if 51 n 1 : T SM Math P S * + I Y Y + Vf - 60 - x 52 x T LINE y + T Z-T P S y SM + 61 R(t) ω LINE FreqComp M T Z-MT sin S Sampl Y IM T rack U SAT ω x 53 62 MOV |x| LINE cos HFS C Z-T T H L MIN IM NEG tan U(0) MAX CIGRE MOV H I ω LOAD 54 63 InitCond exp cotan + M T S i(0) TACS BCT CIGRE MIN SP INIT MAX + LOAD Y log asin ω 55 64 STAT C log10 acos RLC Line/Cab G(s) DC ACC XFMR SY ST ω 56 65 Y RAD atan G(s) F(s|z) + Excit ABC DEF RMS DEG sinh 57 LCC K 66 Windsyn LCC + s RND cosh G u Logic Torque K·s 58 tanh H K 1+T·s K·s 1+T·s x=y x x x y x y y y

  11. 11 ATPDraw node naming • "What you see is what you get" • Connected nodes automatically get the same name – Direct node overlap nodes connected nodes overlap – Positioned on connection • Warnings in case of duplicates and disconnections • 3-phase and n -phase nodes Connection – Extensions A..Z added automatically 1 – Objects for transposition and splitting ABC – Connection between n - and single Transposition Splitter phase

  12. 12 User’s manual • Documents version 3.5 of ATPDraw (246 pages), pdf • Written by Laszlo Prikler and H. K. Høidalen • Content – Intro: To ATP and ATPDraw + Installation – Introductory manual: Mouse+Edit, MyFirstCircuit – Reference manual: All menus and components – Advanced manual: Grouping/LCC/Models/BCTRAN + create new components – Application manual: 9 real examples

  13. 6 54 5 54 4 54 x y 3 x y T 54 K Freq 2 T 54 1 54 • Increased circuit readability 6-phase • Multi-phase connections T - + x y Freq x y 58 G u Angle T 180 T T - T Example 1 + T 2 5 6 3 4 1 13

  14. 14 Example 2 • Multi-phase groups POS + T - T + PULSE 1 3 AC AC POS - LCC Y Y NEG SAT NEG PULSE 1 4 3 6 5 2 6-phase • New component: Collector

  15. 15 Example 3 MODEL FOURIER INPUT X --input signal to be transformed DATA FREQ {DFLT:50} --power frequency n {DFLT:26} --number of harmonics to calculate OUTPUT absF[1..26], angF[1..26],F0 --DFT signals VAR absF[1..26], angF[1..26],F0,reF[1..26], imF[1..26], i,NSAMPL,OMEGA,D,F1,F2,F3,F4 • Multi-phase Models 5 uH 5 mF UI U(0) + M MODEL Cable 0.0265 V Y fourier Y Y Z SAT SAT 1 Diode 132/11.3 Zig-zag HVBUS bridges Regulation transformers 5 uH I 5 mF Y Y ZN0d11y0 transformers SAT UI 10.7/0.693 kV 132 kV 22.2 mH 11.3/10.6 kV U(0) + Cable 0.0265 V Y Y Y Z 20 SAT SAT 16 12 • New Model probe 8 4 0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 [s] 0.10 (f ile Exa_14.pl4; x-v ar t) m:X0027E m:X0027G m:X0027V m:X0027Y

  16. 16 Example 4 • Lightning study • JMarti lines • Simple Bergeron lines in sub-station • Flashover char. In MODELS LINE1 U H V LINE2 L_imp I TOP TWR4 V LCC LCC LCC LCC LCC LCC PT1 A V t t t t TR400 V TR t t t I I I R(i) R(i) R(i)

  17. Transformer modeling SAT Y XFMR Z Y BCT • Saturable Transformer Y • Hybrid Transformer • BCTRAN 17

  18. 18 Saturable transformer • Zigzag supported Zig-zag transformers ZN0d11y0 10.7/0.693 kV 5 uH V Zdy UI -12 U(0) 26.5mohm 5 mF + Cable V Y Y Y Z SAT SAT 5 uH V Zdy UI -6 U(0) 26.5mohm 5 mF + Cable V Y Y Y Z SAT SAT 5 uH V transformers 11.3/10.6 kV Ydy UI 132 kV 132/11.3 U(0) 26.5mohm 5 mF + Cable V Y Y Y Y Y Y SAT SAT SAT 22.2 mH 5 uH V Zdy UI +6 U(0) 26.5mohm 5 mF + Cable V Y Y Y Z SAT SAT 5 uH V Zdy UI +12 U(0) 26.5mohm 5 mF + Cable V Y Y Y Z SAT SAT

  19. 19 BCTRAN • Automatic inclusion of external magnetization characteristic XFMR V V V Y XFMR I 16 kV BCT V V Y BCTRAN I 80 [A] 50 20 -10 -40 -70 0.00 0.02 0.04 0.06 0.08 [s] 0.10 (f ile Exa_16.pl4; x-v ar t) c:X0004A-LV_XA c:X0004A-LV_BA

  20. 20 Hybrid transformer • Four separate parts connected – Leakage: A-matrix; Auto, Y, D with all phase shifts – Winding resistance: Frequency dep. with Foster equiv. – Core: Topological correct core: Frolich equation, relative dimensions. Connected at n +1 winding at core surface. – Capacitance C HA-Xa /2 6 C H-GND /2 C X-GND /2 L 3 N H : N X N X : N X a A L 4 R H ( f ) R X ( f ) C HA-HB /2 Z l ’ a’ Z y A’ C HA-HB /2 C H-GND /2 N H : N X N X : N X b B L 3 R H ( f ) R X ( f ) C HB-HC /2 Z l ’ b’ Z y B’ C H-GND /2 C HB-HC /2 N H : N X N X : N X c C R H ( f ) R X ( f ) Z l L 4 ’ c’ C’ L 3 C H-GND /2 C X-GND /2

  21. 21 Hybrid cont. • Design, test report, or typical values Open and short Typical values from Winding geometry circuit test report text books

  22. 22 Line/Cable modeling • Line/Cable Constants, Cable Parameters – Bergeron, PI, JMarti, Semlyen, Noda(?) • View – Cross section, grounding • Verify log(| Z |) 3.9 – Frequency response, power frequency params. 2.7 • Line Check 1.5 - Power freq. test of line/cable sections log(freq) 0.4 0.0 2.0 4.0 6.0

  23. 23 Example • Double circuit case (420 kV + 145 kV) 12 m 11 m 11 m 4.5 m 9.6 m 4.5 m4.5 m 3.8 m 18.6 m 11 m 35.5 m Test type Circuit Positive sequence system Zero sequence system Z [ Ω /km] Z [ Ω /km] [kV] C [nF/km] C [nF/km] Benchmark data 420 0.02+j0.29 12.8 0.19+j0.71 9.3 50 Hz, 100 Ω m 145 0.06+j0.38 9.7 0.25+j0.80 6.7 Individual testing 420 0.02+j0.29 12.8 0.18+j0.71 9.3 Bergeron model 145 0.06+j0.38 9.7 0.25+j0.80 6.9

  24. Creating the Bergeron model 24

  25. Testing the Bergeron model • Line Model Frequency scan. Model OK for 50 Hz. 25

  26. 26 Line Check • The user selects a group in the circuit • ATPDraw identifies the inputs and outputs (user modifiable)

  27. 27 Line Check cont. • ATPDraw reads the lis-file and calculates the series impedance and shunt admittance

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend