an analog of chang inversion formula for weighted radon
play

An analog of Chang inversion formula for weighted Radon transforms - PowerPoint PPT Presentation

An analog of Chang inversion formula for weighted Radon transforms in multidimensions F.O. Goncharov 1 R.G. Novikov 2 1 Moscow Institute of Physics and Technology Dolgoprudny, Russian Federation 2 Ecole Polytechnique Palaiseau, France


  1. An analog of Chang inversion formula for weighted Radon transforms in multidimensions F.O. Goncharov 1 R.G. Novikov 2 1 Moscow Institute of Physics and Technology Dolgoprudny, Russian Federation 2 Ecole Polytechnique Palaiseau, France Quasilinear Equations, Inverse Problems and their Applications, 2016 F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 1 / 20

  2. Outline Introduction 1 Weighted Radon transforms Chang inversion formula in 2D Main result 2 Novikov’s result for Chang formula in 2D Analog of Chang inversion formula for ND Possible tomographical applications in 3D Summary 3 F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 2 / 20

  3. Outline Introduction 1 Weighted Radon transforms Chang inversion formula in 2D Main result 2 Novikov’s result for Chang formula in 2D Analog of Chang inversion formula for ND Possible tomographical applications in 3D Summary 3 F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 3 / 20

  4. Weighted Radon transforms Let f ∈ C 0 ( R n ) , n ≥ 2 then Radon Rf and weighted Radon R W f transforms are defined correspondingly: � Rf ( s , θ ) def = f ( x ) dx H , (1) x θ = s � W ( x , θ ) f ( x ) dx H , ( s , θ ) ∈ R n × S n − 1 , R W f ( s , θ ) def = (2) x θ = s where W is complex-valued, W ∈ C ( R n × S n − 1 ) ∩ L ∞ ( R n × S n − 1 ). Typical question: Ker ( R ) , Ker ( R W ) = { 0 } ? F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 4 / 20

  5. Classical Results on weighted Radon transforms [L.Chang, 1978] A method for attenuation correction in radionuclide computed tomography. IEEE Transactions on Nuclear Science. [J.Boman, E.T. Quinto, 1987] Support theorems for real-analytic Radon transforms. Duke Mathematical Journal. [R.G. Novikov, 2002] An inversion formula for the attenuated X-ray transformation. Arkiv f¨ ur Matematik. [L.A. Kunyansky, 1992] Generalized and attenuated Radon transforms: restorative approach to the numerical inversion. Inverse problems. [S. Gindikin, 2010] A remark on the weighted Radon transform on the plane. Inverse Problems and Imaging. ... F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 5 / 20

  6. Outline Introduction 1 Weighted Radon transforms Chang inversion formula in 2D Main result 2 Novikov’s result for Chang formula in 2D Analog of Chang inversion formula for ND Possible tomographical applications in 3D Summary 3 F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 6 / 20

  7. Simple example: SPECT Weighted Radon transform ( n = 2 , 3):  + ∞  �  , y ∈ R n , θ ∈ S n − 1 . W a ( y , θ ) = exp  − a ( y + s θ ) ds (3) 0 � W a ( y , θ ) f ( y ) dy , l ∈ T S n − 1 , a ∈ S ( R n ) . R W a f ( l ) = (4) y ∈ l where T S n − 1 = { ( x , θ ) ∈ R n × S n − 1 : ( x · θ ) = 0 } – manifold of all oriented lines in R n , § ( R n ) – Schwartz class. F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 7 / 20

  8. From SPECT to Chang inversion formula in 2D Let f ∈ C 0 ( R 2 ) , W ∈ C ( R 2 × S 1 ) ∩ L ∞ ( R 2 × S 1 ), then 1 � W ( x θ ⊥ , θ ) d θ, h ′ = d def S 1 h ′ f appr = ds h ( s , θ ) , (5) 4 π w 0 ( x ) h W ( s , θ ) = 1 � R W ( t , θ ) dt , ( s , θ ) ∈ T S 1 ≃ R × S 1 , π p . v . (6) s − t R w 0 ( x ) = 1 � S 1 W ( x , θ ) d θ, w 0 ( x ) � = 0 . (7) 2 π [L.Chang, 1978] A method for attenuation correction in radionuclide computed tomography. IEEE Transactions on Nuclear Science. [R.G. Novikov, 2002] An inversion formula for the attenuated X-ray transformation. Arkiv f¨ ur Matematik. – exists exact inversion formula for R W a . F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 8 / 20

  9. Outline Introduction 1 Weighted Radon transforms Chang inversion formula in 2D Main result 2 Novikov’s result for Chang formula in 2D Analog of Chang inversion formula for ND Possible tomographical applications in 3D Summary 3 F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 9 / 20

  10. Inversion with Chang formula in 2D Let W ( x , θ ) , ( x , θ ) ∈ R 2 × S 1 is complex valued, W ∈ C ( R 2 × S 1 ) ∩ L ∞ ( R 2 × S 1 ) and 1 � w 0 ( x ) def = S 1 W ( x , θ ) d θ, w 0 ( x ) � = 0 . (8) 2 π Theorem (R.G. Novikov, 2011) Let W satisfies conditions above, f ∈ C 0 ( R 2 ) and f appr is defined by the Chang inversion formula. Then f = f appr (in terms of distributions) if and only if W ( x , θ ) − w 0 ( x ) ≡ w 0 ( x ) − W ( x , − θ ) . (9) R.G. Novikov, Weighted Radon transforms for which Chang’s approximate inversion formula is exact. Russian Mathematical Surveys , 66(2): 442-443, 2011. F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 10 / 20

  11. Sketch of the proof in 2D Let f ∈ C 0 ( R 2 ), recall: 1 � W ( x θ ⊥ , θ ) d θ, h ′ = d def S 1 h ′ f appr = ds h ( s , θ ) , 4 π w 0 ( x ) h W ( s , θ ) = 1 � R W f ( t , θ ) dt , ( s , θ ) ∈ T S 1 ≃ R × S 1 . π p . v . s − t R Main idea of the proof – “symmetrization” of W: = 1 W s ( x , θ ) def 2( W ( x , θ ) + W ( x , − θ )) , (10) R W s f ( s , θ ) = 1 2( R W f ( s , θ ) + R W f ( − s , − θ )) , (11) h W s ( s , θ ) = 1 2( h W ( s , θ ) − h W ( − s , − θ )) , (12) W s ( s , θ ) = 1 h ′ 2( h ′ W ( s , θ ) + h ′ W ( − s , − θ )) , ( s , θ ) ∈ R × S 1 . (13) F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 11 / 20

  12. Sketch of the proof in 2D From identities (10)-(13) and definition of f appr it follows: 1 � W s ( x θ ⊥ , θ ) d θ, h ′ = d S 1 h ′ f appr ≡ ds h ( s , θ ) , 4 π w 0 ( x ) h W s ( s , θ ) = 1 � R W s f ( t , θ ) dt , ( s , θ ) ∈ T S 1 ≃ R × S 1 . π p . v . s − t R Sufficiency: W s ( x , θ ) ≡ w 0 ( x ) . Necessity: From Radon inversion formula and definition f appr it follows: � S 1 ( h ′ w 0 ( x θ ⊥ , θ ) − h ′ W s ( x θ ⊥ , θ )) d θ = 0 . (14) From 2D-Fourier transform of (14) it follows: h w 0 ≡ h W s ⇒ R w 0 f = R W s f ( ∀ f ∈ C 0 ( R 2 )) ⇒ w 0 ≡ W s (15) F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 12 / 20

  13. Outline Introduction 1 Weighted Radon transforms Chang inversion formula in 2D Main result 2 Novikov’s result for Chang formula in 2D Analog of Chang inversion formula for ND Possible tomographical applications in 3D Summary 3 F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 13 / 20

  14. Analog of Chang formula in ND Let f – test function, W – weight, than the following formulas are defined: n is odd ( − 1) ( n − 1) / 2 � [ R W f ] ( n − 1) ( x θ, θ ) d θ. f appr ( x ) def = (16) 2(2 π ) n − 1 w 0 ( x ) S n − 1 n is even ( − 1) ( n − 2) / 2 � H [ R W f ] ( n − 1) ( x θ, θ ) d θ f appr ( x ) def = (17) 2(2 π ) n − 1 w 0 ( x ) S n − 1 where [ R W f ] ( n − 1) ( s , θ ) = d n − 1 ds n − 1 R W f ( s , θ ) , s ∈ R , θ ∈ S n − 1 , (18) = 1 φ ( t ) � H φ ( s ) def π p . v . s − t dt , s ∈ R . (19) R [F.Natterer, 1986] The mathematics of computerized tomography, vol.32, SIAM . F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 14 / 20

  15. Analog of Chang inversion formula for ND Let W ( x , θ ) , ( x , θ ) ∈ R n × S n − 1 is complex valued, W ∈ C ( R n × S n − 1 ) ∩ L ∞ ( R n × S n − 1 ) and 1 � w 0 ( x ) def = S n − 1 W ( x , θ ) d θ, w 0 ( x ) � = 0 . (20) | S n − 1 | Theorem (F.O. Goncharov, R.G. Novikov, 2016) Let W satisfies conditions above, f ∈ C 0 ( R n ) and f appr is defined by the analog Chang inversion formula in multidimensions. Then f = f appr (in terms of distributions) if and only if W ( x , θ ) − w 0 ( x ) ≡ w 0 ( x ) − W ( x , − θ ) . (21) F.O. Goncharov, R.G. Novikov, An analog of Chang inversion formula for weighted Radon transforms in multidimensions. EJMCA , 4(2): 23-32, 2016. F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 15 / 20

  16. Sketch of the proof in multidimensions 1 Symmetrization: = 1 W s ( x , θ ) def 2( W ( x , θ ) + W ( x , − θ )) , (22) R W s f ( s , θ ) = 1 2( R W f ( s , θ ) + R W f ( − s , − θ )) , (23) then ( − 1) ( n − 1) / 2 � [ R W s f ] ( n − 1) ( x θ, θ ) d θ, f appr ( x ) ≡ (24) 2(2 π ) n − 1 w 0 ( x ) S n − 1 ( − 1) ( n − 2) / 2 � H [ R W s f ] ( n − 1) ( x θ, θ ) d θ f appr ( x ) ≡ (25) 2(2 π ) n − 1 w 0 ( x ) S n − 1 F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 16 / 20

  17. Sketch of the proof in multidimensions Sufficiency: W s ≡ w 0 , then f appr coincides with exact Radon inversion formulas. Neccesity: Same idea as in 2D case ND Fourier transform → R W s f = R w 0 f ( H [ R W s f ] ≡ H [ R w 0 f ]) for all f ∈ C 0 ( R n ) → W s ≡ w 0 . F.O. Goncharov, R.G. Novikov An analog of Chang inversion formula Quasilinear Equations etc. 17 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend